И. Иовель, Л. Голомба, Ю. Попелис, Э. Лукевиц

ГИДРОСИЛИЛИРОВАНИЕ ГЕТЕРОЦИКЛИЧЕСКИХ АЛЬДИМИНОВ, КАТАЛИЗИРУЕМОЕ КОМПЛЕКСАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ*

Исследовано присоединение триэтилсилана к О- и S-гетероциклическим основаниям Шиффа в присутствии комплексов Rh, Pd, Pt, Ir. Используя найденные наиболее активные катализаторы – димерные одновалентные комплексы [Rh(пиклооктадиен-1,5)Cl]₂ и [Pd(аллил)Cl]₂, синтезирован ряд соответствующих аминов.

Ключевые слова: азометины, гетероциклические амины, комплексы переходных металлов, гидросилилирование, катализ.

Присоединение гидросиланов к С=N двойной связи значительно менее изучено, чем к С=О связи альдегидов, кетонов и их производных [1, 2]. К тому же, насколько нам известно, в литературе имеются данные лишь о гидросилилировании алифитических и ароматических негетероциклических азометинов. В этой реакции образуются насыщенные N-силилпроизводные, гидролиз которых приводит к получению соответствующих аминов. В присутствии многих катализаторов эти процессы протекают неселективно, и сопровождаются гидрированием, гидрогенолизом, конденсациями. Положительные результаты получены, в основном, при использовании различных комплексов Rh и Pd [3–5]. Палладиевые катализаторы наиболее эффективны при использовании моногидросиланов, а родиевые активнее в присоединении дигидросиланов [6].

В последние годы, начиная с работ Кагана [7, 8] и Бруннера [9–11], интенсивно развивается направление асимметрического гидросилилирования иминов и оксимов [12–21]. Однако это не расширяет круг исследованных субстратов.

Известно, что гетероциклические амины и, в особенности, их фторсодержащие производные являются потенциальными перспективными предшественниками биологически активных веществ [22–24]. Поэтому исследования, направленные на создание новых методов синтеза таких соединений, имеют как академический, так и практический интерес. Поскольку конечными продуктами реакции являются амины, представляется оптимальным использовать для их получения наиболее дешевый алкилсилан (HSiEt₃).

В настоящей работе изучено гидросилилирование триэтилсиланом оснований Шиффа (1a-h), синтезированных нами ранее [25] конденсацией

^{*} Посвящается академику М. Г. Воронкову в связи с его 80-летием.

фурановых и тиофеновых альдегидов с трифторметилпроизводными анилина. Для выявления закономерностей процессов дополнительно синтезированы некоторые имины (1i-k) и исследованы их превращения. Реакции проводили в присутствии широкого набора катализаторов – комплексов Rh, Pd, Pt, Ir. Полученные результаты приведены на схеме 1 и в табл. 1.

Схема 1

Синтез аминов 4а-к путем гидросилилирования иминов 1а-к

В гидросилилировании имина **1a** было испытано пять различных катализаторов. В присутствии двух из них реакция не шла (табл. 1, опыты 3, 4), оба платиновых катализатора (опыты 1, 2) мало активны, лишь $[Rh(COD)Cl]_2$ катализировал процесс (уже при комнатной температуре), что позволило получить после гидролиза реакционной смеси амин **4a**. В присутствии этого комплекса был получен и амин **4b** (при 65 °C). Взаимодействие HSiEt₃ с имином **1c** было изучено в присутствии пяти комплексов: Ir^I , Pd^0 , Rh^0 , Rh^1 и Pd^I . Лишь одновалентные комплексы родия и палладия катализировали реакцию, причем активность последнего значительно выше (ср. опыты 10 и 12). Амины **4d** и **4e** были синтезированы с помощью гидросилилирования в присутствии [Rh(COD)Cl]₂ в бензоле при 65 °C. С применением этого же катализатора в бензоле и тетрагидрофуране при 65 °C был получен амин **4f**. Оба 3-трифторметильных производных тиофена (**1g** и **1h**) реагируют с HSiEt₃ в присутствии [Rh(COD)Cl]₂

52

медленно (опыты 19, 22). Значительно активнее (как и в реакции с 1с) палладиевый комплекс [Pd(CH₂CHCH₂)Cl]₂ (ср. опыты 19 и 20).

Кроме гетероциклических трифторметилпроизводных иминов **1**а–**h**, в реакции гидросилилирования были исследованы и азометины другой структуры: тиофеновый без CF₃-группы (**1**i) и негетероциклические – с указанной группой и без нее (**1**j и **1**k). Как и в других случаях (опыты 8, 21), комплекс [(C₆H₅)₃P]₄Pd не активен (опыт 23), а [Pd(CH₂CHCH₂)Cl]₂ эффективнее, чем [Rh(COD)Cl]₂ (ср. опыты 24 и 25, 27 и 28, 29 и 31). С помощью обоих этих катализаторов были синтезированы соответствующие амины (**4**i–**k**).

При использовании катализатора $[Rh(COD)Cl]_2$ скорость реакции в ТГФ значительно больше, чем в бензоле (ср. опыты 17 и 18), а активность аллил-палладиевого комплекса в обоих этих растворителях мало различается (опыты 30 и 31). Таким образом, методом гидросилилирования из всех изученных иминов были получены соответствующие амины. Их выход после очистки на хроматографических колонках составлял 70–75% на прореагировавший имин.

Сопоставив реакционную способность полученных иминов (табл. 1), можно заключить, что все фурановые азометины активнее, чем тиофеновые. Наличие метильного заместителя в гетероцикле замедляет реакцию. Трифторметильная группа в положении 3 азочасти молекул не способствует реакции, а в положении 4 ускоряет ее. Последнее относится как к гетерароматическим, так и к ароматическим соединениям. Активность бензилиденамина 1j меньше, чем фуранового и больше чем тиофенового аналогов. Выявленные закономерности представлены на схеме 2.

Схема 2

Таблица 1

Характеристики гидросилилирования иминов 1а–k*

	Имин									Продукт (выход, % (ГЖХ))	
Опыт	Со- еди- не- ние	х	R	Поло- жение СF3	Катализатор**, (мол. %)	Раство- ритель	T., ℃	Продолж. реакции, ч	Конверсия, % (ГЖХ)	До гидролиза	После гидролиза
1	1a	0	н	4	$H_2PtCl_6\cdot 6H_2O(2)$	ΤΓΦ	20	21	21		4a (15)
2	1a	0	н	4	[(C ₆ H ₅) ₃ P] ₄ Pt (2)	ΤΓΦ	20	21	15		4 a (12)
3	1a	0	Н	4	$RhCl_3 \cdot 4H_2O(2)$	ΤΓΦ	20	32.5		Реакция не идет	
4	1a	0	Н	4	[Rh(COD)acac] (2)	ΤΓΦ	20	17.5]			
							65	5.5]		Реакция не идет	
5	1a	0	Н	4	[Rh(COD)Cl] ₂ (2)	ΤΓΦ	20	21	56	2a (54)	4a (49)
6	1b	0	CH ₃	4	[Rh(COD)Cl] ₂ (2)	ΤΓΦ	20	ך 20			
							65	5]	100		4b (85)
7	1c	S	Н	4	$[(C_6H_5)_3P]_2IrCl(CO)(2)$	ΤΓΦ	65	10.5		Реакция не идет	
8	1c	S	Н	4	$[(C_6H_5)_3P]_4Pd(2)$	ΤΓΦ	65	10.5		Реакция не идет	
9	1c	S	Н	4	[Rh(COD)acac] (2)	ΤΓΦ	65	10.5		Реакция не идет	
10	1c	S	Н	4	[Rh(COD)Cl] ₂ (2)	ΤΓΦ	65	10.5	58		4c (50)
11	1c	S	Н	4	[Pd(CH ₂ CHCH ₂)Cl] ₂ (2)	ΤΓΦ	20	5	48	· ·	4c (44)
12	1c	S	Н	4	$[Pd(CH_2CHCH_2)Cl]_2(2)$	C ₆ H ₆	65	3	80	2c (76)	4c (73)
13	1d	S	CH ₃	4	[Rh(COD)Cl] ₂ (2)	C ₆ H ₆	65	18			
					(3)			4	56	· · · ·	4d (48)

54

14	1e	0	н	3	[Rh(COD)Cl] ₂ (2)	C ₆ H ₆	65	10			
					(3)			2	90		4e (81)
15	1e	0	н	3	[Rh(COD)Cl] ₂ (2)	C_6H_6	65	19	97	2e (88)	4e (85)
16	lf	0	CH ₃	3	[Rh(COD)Cl] ₂ (3)	C ₆ H ₆	65	19	88	2f (60), 3f (17)	4f (58)
17	lf	0	CH3	3	[Rh(COD)Cl] ₂ (2)	C ₆ H ₆	65	17	91	2f (86)	4f (80)
18	lf	0	· CH ₃	3	[Rh(COD)Cl] ₂ (3)	ΤΓΦ	65	7	90	4f (69), 3f (19)	4f (65)
19	1g	S	Н	3	[Rh(COD)Cl] ₂ (3)	C ₆ H ₆	65	36	25	2 g (22)	
20	1g	S	Н	3	[Pd(CH ₂ CHCH ₂)Cl] ₂ (2)	C ₆ H ₆	20	25			
							65	4	48	2g (46)	4 g (42)
21	1g	S	Н	3	$[(C_6H_5)_3P]_4Pd(2)$	C_6H_6	20	25]			
							65	4 ∫		Реакция не идет	
22	1h	S	CH3	3	[Rh(COD)Cl] ₂ (3)	C ₆ H ₆	65	41	22		4h (18)
23	1i	s	Н	-	$[(C_6H_5)_3P]_4Pd(2)$	C ₆ H ₆	20	26		Реакция не идет	
24	1i	S	Н	_	[Rh(COD)Cl] ₂ (2)	C ₆ H ₆	65	30	38	2i (35)	
25	11	s	н	-	$[Pd(CH_2CHCH_2)Cl]_2(2)$	C ₆ H ₆	20	26	96	2i (50), 3i (38)	4i (48)
26	1i	s	Н	_	[Pd(CH ₂ CHCH ₂)Cl] ₂ (2)	C ₆ H ₆	65	14	96	2i (52), 3i (39)	4i (50)
27	1j	Ph	· ·	4	[Rh(COD)Cl] ₂ (2)	τγφ	65	5	54		4j (50)
28	1j	Ph		4	$[Pd(CH_2CHCH_2)Cl]_2 (2)$	ΤΓΦ	20	22	88		4j (80)
29	1k	Ph		-	[Rh(COD)Cl] ₂ (2)	ΤΓΦ	65	14.5	39		4k (37)
30	1k	Ph			$[Pd(CH_2CHCH_2)Cl]_2(2)$	C ₆ H ₆	65	14.5	84		4k (76)
31	1k	Ph		_	$[Pd(CH_2CHCH_2)Cl]_2(2)$	ΤΓΦ	65	14.5	87		4k (78)

Соединения 1j-k – PhCH=N-C6H4Y; Y = H, CF₃.
 ** COD = 1,5-циклооктадиен; асас = ацетилацетонат.

Первичными продуктами взаимодействия $HSiEt_3$ с иминами являются соединения структуры 2 (схема 1). Соединения 2е и 2f (фурановые производные с группой 3-CF₃) были выделены из реакционных смесей. Для других (2a, 2c, 2g, 2i) зарегистрированы их масс-спектры в реакционных смесях. Отмечено также присутствие ненасыщенных кремнийсодержащих соединений структуры 3 (3f, 3i), идентифицированных методом ГЖХ-МС. Образование подобных соединений может быть результатом каталитической дегидроконденсации, отмеченной в работе [4] и протекающей параллельно с гидросилилированием.

Было проведено также сопоставление активности в изучаемой реакции двух гомогенных комплексов и гетерогенных катализаторов – металлов (Pd, Ru), нанесенных на различные носители. Взаимодействие $HSiEt_3$ с имином **1а** исследовали в присутствии следующих катализаторов (2 мол. %): $[(C_6H_5)_3P]_2PdCl_2, [(C_6H_5)_3P]_3RuCl_2, а также 5% Pd/C и 5% Ru/Al_2O_3.$

Таблица 2

Coe-	
дине-	δ (м. д.), <i>J</i> (Гц)
ние	
4a	1.5 (1H, m. c, NH), 4.33 (2H, c, CH ₂), 6.24 (1H, M, J=4.0, H _{Fur} -3), 6.31 (1H, M,
	$J = 4.0, J = 2.0, H_{Fur}-4), 6.67 (2H, \pi, J = 9.4, H_{Ar}-3.5), 7.35 (1H, M, H_{Fur}-5), 7.40$
	$(2H, \pi, J = 9.4, H_{Ar}-2.6)$
4b	1.8 (1H, ш. с, NH), 2.27 (3H, д, J = 1.2, CH ₃), 4.28 (2H, с, CH ₂), 5.89 (1H, д. д,
	$J = 3.6, J = 1.2, H_{Fur}-4), 6.11 (1H, \pi, J = 3.6, H_{Fur}-3), 6.55 (2H, \pi, J = 9.5, H_{Ar}-3.5),$
	7.40 (2H, π , J = 9.5, H _{Ar} -2,6)
4c	1.55 (1H, ш. с, NH), 4.55 (2H, с, CH ₂), 6.69 (2H, д, $J = 9.0$, H _{Ar} -3,5), 6.9–7.1 (2H,
	м, H_{Th} -3,4), 7.24 (1H, д. д, J = 4.0, J = 2.0, H_{Th} -5), 7.42 (2H, д, J = 9.0, H_{Ar} -2,6)
4d	2.43 (3H, с, CH ₃), 4.45 (2H, с, CH ₂), 5.59 (1H, м, J = 3.4, J = 1.2, H _{тh} -4), 6.73 (2H,
	μ , $J = 8.4$, H_{Ar} -3,5), 6.78 (1H, μ , $J = 3.4$, H_{Th} -3), 7.42 (2H, μ , $J = 8.4$, H_{Ar} -2,6)
2e	0.8–1.0 (15H, м, SiEt ₃), 4.43 (2H, с, CH ₂), 6.02 (1H, д. д, J = 3.0, J = 1.0, H _{Fur} -3),
	6.22 (1Н, д. д, J = 3.0, 2.0, Н _{гиг} -4), 6.9–7.3 (4Н, м, Ar), 7.42 (1Н, д. д, J = 2.0,
	$J = 1.0, H_{Fur}-5)$
4e	4.33 (2H, c, CH ₂), 6.24 (1H, \exists . \exists , $J = 3.2$, $J = 0.7$, H _{Fur} -3), 6.31 (1H, \exists . \exists , $J = 3.2$,
	$J = 1.9$, H_{Fur} -4), 6.8–6.9 (2H, M, H_{Ar} -5.6), 6.9–7.0 (1H, M, H_{Ar} -4), 7.2–7.3 (1H, M,
	H_{Ar} -2), 7.36 (1H, д. д, $J = 0.7, J = 1.9, H_{Fur}$ -5)
2f	0.8–1.0 (15H, м, SiEt ₃), 2.20 (3H, с, CH ₃), 4.40 (2H, с, CH ₂), 5.78 (1H, м, H _{Fur} -4),
	5.87 (1Н, м, Н _{Fur} -3), 6.8–7.5 (4Н, м, Аr)
4f	2.25 (3H, c, CH ₃), 4.25 (2H, c, CH ₂), 5.88 (1H, μ . μ , $J = 3.2$, $J = 1.0$, H _{Fur} -4), 6.11
	(1H, π , $J = 3.2$, H _{Fur} -3), 6.75–6.9 (2H, M, H _{Ar} -5,6), 6.9–7.0 (1H, M, H _{Ar} -4), 7.2–7.3
	(1H, m, H _{Ar} -2)
4g	4.2 (1Н, ш. с, NH), 4.53 (2Н, с, CH ₂), 6.6–7.6 (7Н, м, H _{Th} -3,4,5, Ar)
4h	2.43 (3H, c, CH ₃), 4.43 (2H, c, CH ₂), 6.59 (1H, M , $J = 3.2$, $J = 1.2$, H_{Th} -4), 6.79 (1H,
	μ , $J = 3.2$, H_{Th} -3), 6.8–6.9 (2H, M, H_{Ar} -5,6), 6.9–7.0 (1H, M, H_{Ar} -4), 7.2–7.3 (1H, M,
	H_{Ar} -2)
1i	7.0–7.5 (8H, м, Th, Ph), 8.51 (1H, с, CHN)
4 i	4.0 (1H, ш. с, NH), 4.51 (2H, с, CH ₂), 6.5–7.3 (6H, м, Ph, H _{Th} -3), 6.71 (1H, м,
	$J = 2, H_{Th} = 4$, 7.18 (1H, M, $J = 2, H_{Th} = 5$)
1j	7.22 (2H, μ , $J = 8.4$, H_{AT} -3,5), 7.3–7.6 (3H, M, H_{Ph} -2,4,6), 7.62 (2H, μ , $J = 8.4$,
	H _{Ar} -2,6), 7.90 (2H, M, H _{Ph} -3,5), 8.42 (1H, c, CHN)
4j	4.35 (3H, c, CH ₂ NH), 6.60 (2H, π , $J = 8.6$, H _{Ar} -3,5), 7.33 (5H, c, Ph), 7.38 (2H, π ,
	$J = 8.6, H_{Ar} - 2.6)$
lk	7.1–7.7 (8H, м, H _{Ph} -2,4,6, Ph'H ₅), 7.93 (2H, м, H _{Ph} -3,5), 8.49 (1H, с, CHN)
4k	3.9 (1H, ш. с, NH), 4.27 (2H, с, CH ₂), 6.5–6.8 (2H, м, H _{Ph} -2,6), 7.0–7.4 (7H, м,

Спектры ЯМР ¹Н синтезированных соединений

56

H_{Ph}-3,5, Ph')

Таблица З

Масс-спектры синтезированных соединений

Соеди	<i>m/z (I</i> оти, %)
2a	355 (14, M ⁺), 336 (5, $[M - F]^+$), 326 (37, $[M - Et]^+$), 224 (17), 188 (20), 154 (100), 145 (9, $[C_6H_4CF_3]^+$), 125 (29), 115 (5, $[SiEt_3]^+$), 97 (8), 87 (14), 81 (72, $[FurCH_2]^+$), 69 (2,
4a	$[CF_3]^+$), 59 (21), 53 (24) 241 (28, M ⁺), 240 (6, $[M - H]^+$), 222 (4, $[M - F]^+$), 174 (4, $[M - Fur]^+$), 172 (3, $[M - CF_3]^+$), 145 (9, $[C_6H_4CF_3]^+$), 80 (6), 81 (100, $[FurCH_2]^+$), 69 (3, $[CF_3]^+$), 53 (25), 39 (5)
4b	255 (17, M ⁻), 236 (2, $[M - F]^{-}$), 211 (11), 174 (5), 172 (4), 160 (1, $[M - MeFur]^{-}$), 145 (9, $[C_6H_4CF_3]^{+}$), 95 (100, $[MeFurCH_3]^{+}$), 65 (4), 51 (5), 43 (10), 39 (5)
2c	371 (22, M ⁻), 353 (2, $[M - F]^+$), 342 (35, $[M - EI]^+$), 284 (1, $[M - 3EI]^+$), 256 (3, $[M - SiEt_3]^+$), 236 (8), 188 (20), 169 (36), 154 (100), 145 (8, $[C_6H_4CF_3]^+$), 141 (31), 127 (5), 113 (12), 97 (76, $[ThCH_2]^+$), 87 (13), 69 (2, $[CF_3]^+$), 59 (21), 45 (8)
4c	257 (16, M), 238 (5, $[M - F]^+$), 174 (5, $[M - Th]^+$), 172 (4), 145 (14, $[C_6H_4CF_3]^+$), 97 (100, $[ThCH_5T^+)$, 69 (6, $[CF_5T^+)$, 53 (7), 45 (8), 39 (5)
4d	271 (16, M ⁺), 252 (1, [M – F] ⁺), 211 (11), 174 (5), 145 (17, [C ₆ H ₄ CF ₃] ⁺), 125 (6), 111 (100 M ₇ TrCH U ⁺) 95 (77 (10) 59 (7) 45 (0) 20 (6)
2e	(100, [MeHCH2]), 95 (7), 77 (12), 89 (10), 59 (7), 45 (9), 59 (6) 355 (10, M ⁺), 336 (2, $[M - F]^+$), 326 (35, $[M - Et]^+$), 224 (16), 188 (11), 154 (100), 153 (35), 145 (6, $[C_6H_4CF_3]^+$), 125 (29), 115 (5, $[SiEt_3]^+$), 97 (8), 87 (12), 81 (54,
4e	[FurCH ₂ [⁻), 69 (1, [CF ₃] ⁻), 59 (19), 53 (18) 242 (6, [M + H] ⁺), 241 (47, M ⁺), 222 (15, [M - F] ⁺), 213 (5), 172 (9, [M - CF ₃] ⁺), 145 (23, [C ₆ H ₄ CF ₃] ⁺), 125 (7), 113 (18), 95 (7), 81 (100, [FurCH ₂] ⁺), 75 (9), 69 (7, [CF ₃] ⁺), 63 (8) 53 (21) 39 (12)
2f	$369 (6, M^{+}), 340 (11, [M - Et]^{+}), 246 (4), 216 (4), 188 (5), 167 (15), 154 (29), 139 (8), 95 (100 [MeErre (H_1^{+}), 87 (6), 77 (3), 59 (10) 43 (11)]$
3f	(10), (10)
4 f	255 (14, M ⁺), 236 (3, $[M - F]^+$), 174 (4), 145 (10, $[C_6H_4CF_3]^+$), 95 (100, $[MeFurCH_2]^+$), 51 (6) (3)
2g	371 (19, M^+), 353 (2, $[M - F]^+$), 342 (33, $[M - EI]^+$), 256 (3, $[M - SiEt_3]^+$), 236 (5), 217 (4), 188 (13), 169 (31), 154 (100), 145 (9, $[C_6H_4CF_3]^+$), 141 (30), 127 (6), 113 (11), 97 (63) [TbCH_4]^+, 87 (9), 77 (5), 59 (17), 45 (6)
4g	$(35, [110, H_2]), (37, (5), (77, (5), (39, (17), 45, (6), (17), $
4h	$(100, [11CH_2]), 69 (6, [CF_3]), 53 (8), 45 (10), 39 (6)$ 271 (20, M ⁺), 252 (1, [M – F] ⁺), 174 (5), 145 (14, [C ₆ H ₄ CF ₃] ⁺), 111 (100, [MeThCH ₂] ⁺), 95 (5), 77 (8), 69 (5), 45 (6)
11	187 (85, M ⁺), 186 (100, $[M - H]^+$), 115 (6), 110 (2, $[M - Ph]^+$), 104 (4, $[M - Th]^+$), 95 (4), 97 (100, $[ThCH_2]^+$), 84 (5, $[ThH]^+$), 77 (40, Ph ⁺), 69 (5), 63 (5), 58 (5), 51 (26), 45 (9), 39 (14)
2i	306 (16), 305 (67, M ⁺), 276 (3, [M – Et] ⁺), 249 (20), 248 (100, [M – 2Et – H] ⁺), 244 (37), 218 (5), 200 (3), 190 (16), 156 (5), 130 (12), 115 (23, [SiEt ₃] ⁺), 104 (6), 87 (47), 77 (28, Ph ⁺), 59 (50), 45 (8), 31 (5)
3i	$\begin{array}{c} (24), 121, 303 (45, M^{+}), 273 (20), 274 (92, [M - Et]^{+}), 246 (5), 216 (2, [M - 3Et]^{+}), 170 \\ (14), 169 (100), 149 (9), 142 (10), 141 (80), 121 (19), 120 (49), 113 (23), 97 (68), 87 \\ (24), 77 (23, Pk^{+}), 59 (46), 53 (13), 45 (14) \\ \end{array}$
4i	190 (6), 189 (48, M^+), 187 (8), 186 (10), 154 (2), 106 (4), 97 (100, [ThCH ₂] ⁺), 77 (18, R^+), 155 (10), 51 (15), 155 (14), 20 (16)
1j	$ [M - M]^{+}, (35 (10), 51 (10), 45 (14), 59 (16). $ $ 250 (12), 249 (75, M^{+}), 248 (100, [M - H]^{+}), 230 (4, [M - F]^{+}), 180 (7), 172 (8, [M - Ph]^{+}), 145 (38, [C_{6}H_4CF_3]^{+}), 126 (7), 125 (9), 95 (12), 89 (5), 77 (11, Ph^{+}), 75 (9), 69 (7, 100, 100, 100, 100, 100, 100, 100, 10$
4j	$[CF_3]$), 51 (10), 39 (5). 252 (10), 251 (65, M ⁺), 250 (14, $[M - H]^+$), 232 (13, $[M - F]^+$), 182 (2), 174 (10, $[M - Ph]^+$), 172 (6), 145 (21, $[C_6H_4CF_3]^+$), 125 (4), 113 (5), 92 (7), 91 (100, $[PhCH_2]^-$), 77 (6,
1k	Fn), 65 (17), 51 (8), 39 (7) 182 (10), 181 (81, M ⁺), 180 (100, $[M - H]^+$), 152 (7), 104 (10, $[M - Ph]^+$), 89 (7), 78
4k	(10), 77 (56, Ph ⁻), 63 (10), 51 (37), 50 (14), 39 (9) 184 (12), 183 (84, M ⁺), 182 (33, $[M - H]^+$), 154 (4), 152 (2), 106 (20, $[M - Ph]^+$), 104 (14, $[M - Ph - 2H]^+$), 92 (9), 91 ($[PhCH_2]^+$), 89 (5), 77 (37, Ph ⁺), 65 (38), 63 (11), 51 (25), 50 (9), 39 (22)

8

Реакции проводили в бензоле при 65 °С в течение 42 ч. Оказалось, что комплекс палладия и Ru/Al_2O_3 не активны в этом процессе. В присутствии катализатора палладий на угле конверсия составила 40%, а выход 4а – 35% (ГЖХ). Рутениевый комплекс был еще менее эффективен: 32% (конверсия), 26% (выход амина). Активность этих двух катализаторов значительно меньше, чем одновалентных комплексов родия и палладия (табл. 1).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометрах Varian Mercury (200 МГц) и Bruker WH-90/DS (90 МГц) в CDCl₃, внутренний стандарт ТМС. Масс-спектры получены на хромато-масс-спектрометре HP 6890 GC/MS, оборудованном капиллярной колонкой HP-5 MS (30.0 м × 250 мкм × 0.25 мкм), при программировании температуры от 70 до 260 °C (10 °C/мин). Бензол и тетрагидрофуран перед использованием очищали и сущили по известным методикам. Альдегиды и амины очищали вакуумной перегонкой или перекристаллизацией, после чего их свойства соответствовали литературным данным. В работе использовали гидросилан и комплексы переходных металлов, полученные от фирм Fluka, Merck и Acros, и молекулярные сита 4A (VEB Laborchemie Apolda). Синтез азометинов 1i-k осуществляли по методике [25]. Их характеристики соответствовали данным, приведенным в [26–28].

Общая методика синтеза аминов 4а-k. Реакционную пробирку Ріегсе объемом 5 см³ продувают аргоном и помещают в нее 2 мл сухого бензола или тетрагидрофурана, 0.01 или 0.015 ммоль катализатора и 0.5 ммоль исходного имина, после чего перемешивают при комнатной температуре 30 мин. Затем раствор охлаждают льдом до 0 °С и добавляют шприцем 96 мкл триэтилсилана (0.6 ммоль). Реакцию проводят при комнатной температуре или при 65 °С, периодически отбирая пробы и анализируя их методами ТСХ, ГЖХ и ГЖХ-МС. По окончании силилирования (продолжительность процессов указана в табл. 1) реакционную смесь упаривают при пониженном давлении (30 °C/15 мм) и проводят гидролиз, добавляя 2.5 мл метанола и 0.5 мл 10% водного раствора NaHCO₃. Смесь экстрагируют эфиром, экстракт сушат над безводным Na₂SO₄, затем фильтруют и упаривают. Остаток разделяют методом жидкостной хроматографии на колонке с силикагелем (Kieselgel 60, 0.063–0.200 меш, Merck), элюент: бензол-этилацетат (18 : 1 или 20 : 1). Все полученные продукты представляют собой маслообразные вещества (желтые или оранжевые). Их ЯМР ¹Н и масс спектры приведены в табл. 2, 3.

Авторы благодарны Латвийскому совету по науке за финансирование работы (грант № 181).

СПИСОК ЛИТЕРАТУРЫ

- 3. I. Ojima, T. Kogure, Tetrah. Lett., 2475 (1973).
- 4. K. A. Andrianov, M. I. Filimonova, V. I. Sidorov, J. Organometal. Chem., 142, 31 (1977).
- К. А. Андрианов, В. И. Сидоров, М. И. Филимонова, Изв. АН СССР, Сер. хим., 460 (1978).
- 6. K. A. Horn, Chem. Rev., 95, 1317 (1995).
- 7. N. Langlois, T.-P. Dang, H. B. Kagan, Tetrah. Lett., 4865 (1973).
- 8. H. B. Kagan, N. Langlois, T.-P. Dang, J. Organometal. Chem., 90, 353 (1975).
- 9. H. Brunner, R. Becker, Angew. Chem., Int. Ed. Engl., 23, No. 3, 222 (1984).
- 58

^{1.} Comprehensive Handbook of Hydrosilylation, Ed. B. Marciniec, Pergamon, Oxford, 1992.

^{2.} В. Б. Пухнаревич, Э. Лукевиц, Л. И. Копылова, М. Г. Воронков, *Перспективы* гидросилилирования, Ин-т орг. синтеза Латв. АН, Рига, 1992.

- 10. H. Brunner, R. Becker, S. Gauder, Organometallics, 5, 739 (1986).
- 11. H. Brunner, J. Organometal. Chem., 300, 39 (1986).
- 12. N. Kokel, A. Mortreux, F. Petit, J. Mol. Catal., 57, L5 (1989).
- J. Martens, in: G. Helmchen, R. W. Hoffmann, J. Mulze, E. Schaumann, (eds), *Houben-Weyl. Methods of Organic Chemistry. Stereoselective synthesis*, E21, Georg Thieme Verlag, Stuttgart, New York, 1995, 1931.
- 14. A. Tillack, C. Lefeber, N. Peulecke, D. Thomas, U. Rosenthal, Tetrah. Lett., 38, 1533 (1997).
- 15. Y. Nishibayashi, I. Takei, S. Uemura, M. Hidai, Organometallics, 17, 3420 (1998).
- 16. X. Verdaguer, U. E. W. Lange, S. L. Buchwald, Angew. Chem., Int. Ed. Engl., 37, 1103 (1998).
- H. Nishiyama, in *Comprehensive Asymmetric Catalysis*, eds E. N. Jacobsen, A. Pfaltz, H. H. Yamamoto, Springer, Berlin, 1999, 983.
- 18. J. Yun, S. L. Buchwald, J. Am. Chem. Soc., 121, 5640 (1999).
- 19. J. Yun, S. L. Buchwald, J. Org. Chem., 65, 767 (2000).
- 20. M. C. Hansen, S. L. Buchwald, Org. Lett., 2, 713 (2000).
- 21. F. Fache, E. Schulz, M. L. Tommarino, M. Lemaire, Chem. Rev. 100, 2159 (2000).
- 22. J. T. Welsh, Tetrahedron 43, 3123 (1987).
- 23. Соединения фтора. Синтез и применение, под ред. Н. Исикава, Мир, Москва, 1990.
- 24. А. В. Санин, В. Г. Ненайденко, Е. С. Баленкова, ЖОрХ, 35, 735 (1999).
- И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц, XTC, 890 (2000);
 [I. Iovel', L. Golomba, Yu. Popelis, S. Grinberga, E. Lukevics, Chem. Heterocyclic Comp., 36, 779 (2000)].
- 26. R. W. Drisko, H. McKennis, J. Am. Chem. Soc., 74, 2626 (1952).
- 27. P. M. Maginnity, J. L. Eisenmann, J. Am. Chem. Soc., 74, 6119 (1952).
- 28. В. А. Измаильский, Е. А. Смирнов, ЖОХ, 25, 1400 (1955).

Латвийский институт органического синтеза, Рига LV-1006 e-mail: iovel@osi.lv

59

Поступило в редакцию 20.03.2001