К. Н. Зеленин, Л. Ф. Мельникова, И. П. Бежан, И. В. Лагода, Б. А. Чакчир

1,1-ДИАЛКИЛ-2-АЦИЛ-3-ГИДРОКСИПИРАЗОЛИДИНИЕВЫЕ И 2,2-ДИАЛКИЛ-5-ГИДРОКСИИЗОКСАЗОЛИДИНИЕВЫЕ СОЛИ

Соли 1,1-диметил-2-ацилгидразинов и 1,1-диалкилгидроксиламинов количественно присоединяются к кратной связи оксосоединений с незамещенным винильным заместителем, причем строение продуктов определяется природой заместителя при карбонильной группе. По данным спектроскопии ЯМР 1 Н и 13 С производные акролеина имеют циклическое строение 1,1-диалкил-2-ацил-3-гидроксипиразолидиниевых (2,2-диалкил-5-гидроксиизоксазолидиниевых) солей, в то времякак производные фенилвинилкетона и солей гидразидов представляют собой соответствующие линейные соли гидразиния. Для некоторых производных метилвинилкетона в растворах имеет место кольчато-цепная таутомерия.

Данные о реакции акролеина [1, 2] и метилвинилкетона [3, 4] с солями N,N-диметилгидразина, с одной стороны, и взаимодействии с 1-алкил(арил)-2-ацилгидразинами [5—7] — с другой, привели нас к заключению о возможности реакции между α,β -непредельными карбонильными соединениями и солями 1,1-диалкил-2-ацилгидразинов и N,N-диалкилгидроксиламинов, принципиальная возможность которой и была показана [8]. Здесь приводим подробные данные об особенностях этой реакции и строении ее продуктов. Мы нашли, что реакция имеет место лишь с α,β -непредельными карбонильными соединениями, обладающими незамещенной винильной группой. Ни окись мезитила, ни кротоновый и коричный альдегиды, ни метакролеин не проявляют склонности к реагированию. Однако взаимодействие легко происходит с акролеином, метилвинил- и фенилвинилкетонами, давая продукты присоединения в отношении 1 : 1 (соединения I—XII) с достаточно высокими выходами (табл. 1).

Строение веществ I—XII определяется природой заместителя при карбонильной группе. В реакции с акролеином, независимо от природы заместителя в ацильной группе молекулы гидразида, вещества I—IV имеют циклическое строение 1,1-диалкил-2-ацил-3-гидроксипиразолидиниевых солей (Б), как и производные гидроксиламинов XI, XII, представляющие собой 2,2-диалкил-5-гидроксиизоксазолидиниевые соли, что доказывается

Ia X = Cl, Y = NCOH, R = H; I6 X = CF3COO, Y = NCHO, R = H; II X = Cl, Y = NCOCH3, R = H; II X = Cl, Y = NCOCH2COCH3, R = H; IV X = CF3COO, Y = NCOC6H5, R = H; V X = Cl, Y = NCOH3, R = CH3; VI X = CF3COO, Y = NCOCH3, R = CH3; VII X = CF3COO, Y = NCOCH3, R = CH3; VII X = CF3COO, Y = NCOH3, R = C6H5; XX = Cl, Y = NCOCH2COCH3, R = C6H5; X X = CF3COO, Y = NCOC6H5, R = C6H5; XI X = Cl, Y = O, R = H; XII X = Cl, Y = O, R = H; III X = Cl, Y = O, R = H; III X = CH3C6H5

Таблица 3

Характеристики синтезированных соединений

Соеди- нение	Брутго- формула	В	Найпено. % ычислено, %	<i>Т</i> пл, °С*	Выход, %	
нение	формула	С	Н	N		
Ia	C ₆ H ₁₃ ClN ₂ O ₂	<u>39,72</u> 39,99	7.55 7,25	<u>15,36</u> 15,51	161162	59
Іб	C ₈ H ₁₃ F ₃ N ₂ O ₄	36,98 37,22	5,67 5,07	10,59 10,85	9798	79
П	C ₇ H ₁₅ ClN ₂ O ₂	43,31 43,19	8,05 7,77	14,2 <u>3</u> 14,39	127128	56
m	C ₉ H ₁₇ ClN ₂ O ₃	45,47 45,67	7.48 7,24	11,95 11,84	174175	67
IV	C ₁₄ H ₁₇ F ₃ N ₂ O ₂	50,42 50,30	5,58 5,13	8,12 8,38	*2	84
V	C7H15ClN2O2	43,58 43,19	8, <u>05</u> 7,77	14,59 14,39	134135	75
VI	C ₁₀ H ₁₇ F ₃ N ₂ O ₄	41,86 41,96	6,29 5,59	10,01 9,79	*2	78
VII	C ₁₅ H ₁₉ F ₃ N ₂ O ₄	<u>51.68</u> 51.71	6,04 5,50	7.87 8,04	*2	79
VIII	C ₁₄ H ₁₇ F ₃ N ₂ O ₄	49.88 50,30	5,65 5,13	8.63 8,38	_* 2	80
IX	C ₁₅ H ₂₁ ClN ₂ O ₃	57.39 57,60	6,92 6,77	8,26 8,96	* ²	74
X	C ₂₀ H ₂₁ F ₃ N ₂ O ₄	58,17 58,53	5,47 5,16	6.59 6,83	_* 2	75
XI	C ₅ H ₁₂ CINO ₂	38.85 39,10	7,98 7,87	9,26 9,12	125126	85
XII	C ₁₇ H ₂₀ ClNO ₂	67.09 66,77	6,32 6,59	4.65 4,58	127128	76

 $^{^*}$ Растворитель ацетонитрил—метанол, 3 : 1. Масло.

Спектры ЯМР ¹³С синтезированных соединений

Соеди- нение	Форма	Химический сдвиг, м. д.		
Іб*	Б	159,1 (COO [¬]); 158,5 (HCO); 117,1 (CF ₃); 83,3 (C ₍₃₎); 69,3 (C ₍₅₎); 56,7 и 53,7 [(NCH ₃) ₂]; 30,2 (C ₍₄₎)		
V*	Б	27,3 (CH ₃); 37,5 (C ₍₄₎); 69,3 (C ₍₅₎); 94,3 (C ₍₃₎); 56,1 и 57,1 [N(CH ₃) ₂]; 158,3 (CHO); 179,1 (C=O);		
	A	15,7 (CH ₃ O; 40,4 (CH ₂); 63,6 (CH ₂ N); 55,2 [N(CH ₃) ₂]; 164,3 (CHO)		
XI*2	Б	103,1 (C ₍₃₎); 65,6 (C ₍₅₎); 57,7 и 55,7 [N(CH ₃) ₂]; 34,4 (С ₍₄₎)		

^{*} В ДМСО-D₆. *² В CD₃OD.

присутствием в их спектрах ПМР сигнала протона 3-H (5-H в случае производных XI, XII) при 5.8...6.2 м. д., гидроксильной группы при 6.9...9.2 м. д. и магнитной неэквивалентностью метильных групп при атоме

Спектры ПМР синтезированных соединений

Соеди- нение	Растворитель	Форма	Химический сдвиг, м. д.					
			5-H, 3-H*	4-H	NCH3*2	R	ОН	Y
Įа	ДМСО-D6	Б	4,41 (2Н, м)	2,22 (1H, м); 2,79 (2H, м)	3,65 (3H, c); 4,03 (3H, c)	6,12 (1Н, м)	8,08 (1Н, уш. с)	8,87 (1H, c)
Ιб	ДМСО-D ₆ + CDCl ₃	Б	4,58 (2Н, м)	2,50 (1H, м); 2,84 (1H, м)	3,84 (3H, c); 4,00 (3H, c)	6,15 (1Н, м)	6,90 (1Н, уш. с)	8,78 (1H, c)
II	дмсо-D6	Б	4,57 (2Н, м)	2,60 (1H, м); 2,80 (1H, м)	3,72 (3H, c); 3,93 (3H, c)	5,92 (1Н, м)	7,82 (1H, ym. c)	2,34 (3H, c)
III	ДМСО-Д6	Б	4,46 (2Н, м)	2,60 (1H, м); 2,83 (1H, м)	3,79 (3H, c); 3,92 (3H, c)	5,83 (1Н, м)	8,14 (1Н, уш.с)	2,3 (3H, c, CH3CO), 4,13 (2H, c, CH ₂)
·	ДМФА-D7	Б	4,46 (2Н, м)	1,92 (1H, м); 2,35 (1H, м)	3,78 (3H, c); 3,96 (3H, c)	5,85 (1Н, м)	8,50 (1H, ym. c)	7,367,92 (5Н, м, Наром)
V	CD ₃ OD	Б* ³ А	4,00 (2H, м) 4,31 (2H, т)	2,60 (1H, M); 2,85 (2H, M) 3,43 (2H, M)	3,76 (3H, c); 3,90 (3H, c) 3,37 (6H, c)	1,84 (3H, c) 2,15 (3H, c)		8,63 (1H, c) 8,14 (1H, c)
VI	CD ₃ OD	Α	3,59 (2Н, т)	2,67 (2Н, м)	3,24 (6H, c)	1,99 (3H, c)		2,15 (3H, c)
VII	CD ₃ OD	A	4,5 (2Н, т)	2,56 (2Н, т)	3,17 (6H, c)	2,02 (3H, c,)		7,427,89 (5Н, м, Наром)
VIII	CDCl ₃	A	3,91 (2Н, м)	2,82 (2Н, м)	3,19 (6H, c)	7,568,00 (5Н, м, Ңаром)	· ·	8,14 (1H, c)
IX	CDCl ₃	· A	4,00 (2Н, т)	2,70 (2Н, м)	3,44 (6H, c)	7,648,26 (5Н, м, Ңаром)	· - -	2,28 (3H, c, CH ₃ CO); 3,72 (2H, c, CH ₂)
X	CDCl ₃	A	4,64 (2Н, т)	2,47 (2Н, т)	3,25 (6H, c)	7,247,76 (5Н, м, Ңаром)		7,247,76 (5Н, м, Наром)
XI	ДМСО-D6	Б	4,3 (2Н, м)	2,78 (1H, м); 3,04 (1H, м)	3,57 (3H, c); 3,71 (3H, c)	5,96 (1Н, м)	8,28 (1Н, уш. с)	
XII	ДМФА-D7	Б	5,36 (3H, м)* ⁴ ; 4,40 (3H, м)* ⁵	2,06 (1H, м); 1,18 (1H, м)	7,208,00 (10H, м)	5,82 (1Н, д)	9,20 (1Н, уш. с)	

азота вследствие их диастереотопии, вызванной наличием хирального центра — атома углерода, связанного с гидроксильной группой (табл. 2).

В углеродных спектрах, полученных для отдельных представителей этих соединений (табл. 3), имеется сигнал sp^3 -гибридного атома углерода $C_{(3)}$ в области 83,3...94,3 м. д., присущий гидроксипиразолидинам с полуаминальным фрагментом [5] (103,1 м. д. в случае атома углерода $C_{(5)}$ с его O,O-окружением у соединения XI. Прочие детали спектров ЯМР 1 Н и 13 С соединений I—IV полностью согласуются с предложенной структурой. Химическим доказательством структуры солей I—IV является аминонитрильное разложение, осуществленное нами на примере производного I6 [8].

При переходе к α,β -ненасыщенным кетонам по аналогии с полученными ранее результатами для реакции с β -алкилгидразидами [6] можно было ожидать образования четвертичных солей N-ацилгидразиноалканонов. Действительно, продукты взаимодействия солей 1,1-диметил-2-ацилгидразинов с метилвинил- (VI, VII) и фенилвинилкетонами (соединения VIII—X) не претерпевают циклизации и представляют собой соответствующие четвертичные соли линейного строения А. Это следует из ожидаемого набора сигналов в их спектрах ПМР (табл. 2), среди которых N-метильные группы являются эквивалентными.

Однако соль V, полученная реакцией гидрохлорида 1,1-диметил-2-формилгидразина с метилвинилкетоном, в кристаллическом состоянии имеет строение соответствующей пиразолидиниевой соли (Б), о чем можно судить по спектру ПМР ее свежеприготовленного раствора как в СD₃OD, так и в ДМСО-D₆. Однако в течение нескольких часов в тех же растворах наблюдается установление таутомерного равновесия А = Б, что приводит к удвоению всех сигналов в спектрах ПМР (см. табл. 2). Таутомеры можно достоверно различить с помощью сигнала метильной группы при связи С=О в интервале 2,15...2,18 м. д. у линейного таутомера А и в более сильном поле, при 1,82...1,84 м. д. — для циклической формы Б. Удвоение всех сигналов наблюдается и в углеродном спектре этой соли (см. табл. 3). Положение равновесия А = Б для производных метилвинилкетона (соединения V—VII) зависит от природы N-ацильного заместителя: при Y = NCOH таутомерия существует (соединение V), если же Y = NCOCH₃ или NCOC₆H₅, то вещество имеет только линейное строение (соединения VI—VII, форма A).

Соли I—IV и XI,XII, полученные из акролеина, устойчивы в растворах и в твердом состоянии и при непродолжительном нагревании не разрушаются. Производные метил- и фенилвинилкетонов V-X, стабильные в отсутствие растворителей, в растворах (в большей степени в ДМСО-D6 в меньшей — в CD3OD и CDCI3) претерпевают частичный ретрораспад. Это подтверждается появлением сигналов исходных кетона и гидразида в их спектрах ПМР при хранении растворов или сразу при повышении температуры. Поэтому эти вещества выделялись из реакционных смесей без нагревания.

Таким образом, реакция α, β -непредельных карбонильных соединений с гидразинами, как метод синтеза производных 1,2-диазола [7], не ограничивается классическим вариантом получения 2-пиразолинов при взаимодействии с самим гидразином и его 1-монозамещенными производными, но присуща и 1,1-дизамещенным (соли 1,1-диалкилгидразинов дают 1,2-дизамещенным 1.1-пиалкил-2-пиразолиниевые соли). кил (арил) гидразиды используются для синтеза 5-гидроксипиразолидинов) и тризамещенным гидразинам (соли 1,1-диалкил-2-ацилгидразинов служат для синтеза 1,1-диалкил-3-гидроксипиразолидиниевых солей). В целом же, по-видимому, можно говорить об общем правиле — чтобы наблюдалось присоединение азотистых нуклеофилов (амины, гидразины, гидроксиламины как в виде солей и свободных оснований) по кратной связи алкеналей и алкенонов, сумма заместителей у реакционных центров (кратная связь и атом азота) должна быть не больше трех.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР ¹Н получены на спектрометре Tesla BS-497 (100 МГц), спектры ЯМР ¹³С сняты на приборе Bruker AC-200 (50,32 МГц). По методикам, описанным ранее, получены исходные гидразиды [9—11], N,N-диметил- [12] и дибензилгидроксиламин [13]. Соединения идентифицировали данными спектров ПМР как в свободном состоянии, так и в виде гидрохлоридов или фторацетатов. Синтез фенилвинилкетона осуществлен по методике работы [14].

Синтез солей I—XII. К раствору 10 ммоль хлористоводородной соли соответствующего гидразида или гидроксиламина в 20 мл ацетонитрила добавляют 12 ммоль непредельного карбонильного соединения и выдерживают смесь 3...5 сут (при $50\,^{\circ}$ C в случае реакции с акролеином). Для трифторацетатов ту же процедуру выполняют со свободным гидразидом в 20 мл CF3COOH. Растворитель удаляют в вакууме, остаток промывают эфиром (3×50 мл), перекристаллизовывают (для солей I—IV и XI, XII), сушат в вакууме и хранят в эксикаторе над P_2O_5 . Соединения V—X очищали промывкой эфиром. Характеристики полученных соединений I—XII приведены в табл. 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иоффе Б. В., Зеленин К. Н. // ДАН. 1962. Т. 144. С. 1303.
- 2. Иоффе Б. В., Зеленин К. Н. // ЖОХ. 1963. Т. 33. С. 3231.
- 3. Иоффе Б. В., Зеленин К. Н. // ДАН. 1964. Т. 154. С. 864.
- 4. Tamura Y., Tsugoshi T., Nakajima Y., Kita Y. // Synthesis. 1984. N 11. P. 930.
- 5. Зеленин К. Н., Довгилевич А. В., Бежан И. П., Голубева Г. А., Свиридова Л. А., Пастушенков Л. В., Громова Э. Г., Гатчина Т. А., Помогайбо С. В. // ХГС. 1984. № 5. С. 659.
- 6. Зеленин К. Н., Бежан И. П., Довгилевич А. В. // ЖОрХ. 1984. Т. 20. С. 1977.
- 7. Zelenin K. N. // Org. Prep. Proc. Int. 1995. Vol. 27. P. 519.
- 8. Zelenin K. N., Lagoda I. V., Bezhan I. P. // Tetrah. Lett. 1992. Vol. 33. P. 2861.
- 9. Beltrami R., Bissell E. // J. Amer. Chem. Soc. 1956. Vol. 78. P. 2467.
- 10. Hinman R. L. // J. Amer. Chem. Soc. 1956. Vol. 78. P. 1645.
- 11. Sedor E. A., Freis F. E., Richards H. J. // Org. Prep. Proc. Int. 1970. Vol. 2. P. 275.
- 12. Синтезы органических препаратов. М.: И.Л. , 1961. Сб. 11. С. 36.
- 13. Wragg A. H., Stevens T. S. // J. Chem. Soc. 1959. N 2. P. 461.
- 14. *Шур А. М.* // Нефтехимия. 1962. Т. 2. С. 600.

Военно-медицинская академия, Санкт-Петербург 194175, Россия e-mail: zelenin@infopro.spb.su Поступило в редакцию 22.01.98