А. В. Аксенов, О. Н. Надеин, И. В. Боровлев, Ю. И. Смушкевич

ИССЛЕДОВАНИЯ В ОБЛАСТИ 2,3'-БИХИНОЛИЛА

5*. ИССЛЕДОВАНИЕ РЕАКЦИИ СТАБИЛИЗИРОВАННЫХ С-НУКЛЕОФИЛОВ С 1-АЛКИЛ-3-(2-ХИНОЛИЛ)ХИНОЛИНИЙ ГАЛОГЕНИДАМИ

Исследована региоселективность нуклеофильного присоединения стабилизированных С-нуклеофилов к 1-алкил-3-(2-хинолил) хинолиний галогенидам. Реакция последних с енолятами, индолнатрием и цианид-ионом приводит к продуктам присоединения по положению 4 — соответствующим 4'-замещенным 1'-алкил-1',4'-дигидро-2,3'-бихинолилам.

В продолжение работ по исследованию нуклеофильного присоединения в ряду 2,3'-бихинолила (I) мы изучили региоселективность реакции продуктов его кватернизации II с «мягкими» нуклеофилами: енолятами, индолнатрием и пианил-ионом.

2,3'-Бихинолил, являющийся амбидентным нуклеофилом, образует с избытком алкилирующих реагентов исключительно продукты моноалкилирования по положению 1'— 1-алкил-3-(2-хинолил) хинолиний галогениды IIа,б [2, 3]. Мы установили, что методика синтеза солей II с использованием в качестве растворителя ДМФА оказалась малоэффективной для получения солей IIв—д вследствие уменьшения выхода и образования побочных продуктов. При кипячении соединения I с алкилгалогенидами в ацетонитриле соединения IIв—д образуются с выходом, близким к количественному.

II а
$$R = Me$$
, 6 $R = Et$, в $R = Bu$, г $R = CH_2Ph$, д $R = CH_2COPh$; $IIa-r X = I$, д $X = Br$

Известно [4], что реакции солей пиридиния и хинолиния с относительно «мягкими» нуклеофилами подчиняются орбитальному контролю, что приводит к продуктам присоединения по положению с максимальной граничной плотностью. В соединениях IIа—д, по данным квантово-химических расчетов, таким является положение 4 (рисунок).

^{*} Сообщение 4 см. [1].

Коэффициенты НСМО соединения Па по данным расчета методом MNDO

Можно было ожидать, что используемые нами «мягкие» стабилизированные С-нуклеофилы будут присоединяться по положению 4.

III а $Nu = CH(CO_2Et)_2$, б $Nu = CH_2COPh$, в-е Nu = 3-индолил, ж-к Nu = CN; IIIa-в,ж R = Me, г,з R = Et, д R = Bu, е,и $R = CH_2Ph$, к $R = CH_2COPh$

Действительно, при реакции соединений II с енолятами малонового эфира и ацетофенона, индолнатрием и цианидом натрия в ТГФ образуются исключительно аддукты III по положению 4. Выходы 4'-дикарбоэтоксиметил- (IIIа) и 4'-фенацил-1'-метил-1',4'-дигидро-2,3'-бихинолила (IIIб) составляют 78 и 81% соответственно. Индольные производные IIIв—е образуются с выходом 65...82%, а цианопроизводные IIIж—к — с выходом, близким к количественному.

Таким образом, с учетом амбидентности как электрофила, так и нуклеофилов в данных реакциях, реализуется вариант взаимодействия реакционных центров по принципу «мягкий» — «мягкий».

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР записаны на приборах Bruker WP-200 и Bruker AM-300 с использованием ТМС в качестве внутреннего стандарта. Контроль за протеканием реакций и индивидуальностью синтезированных соединений осуществляли на пластинках Silufol UV-254, система растворителей: этилацетат—гексан, 1:1. Колоночную хроматографию проводили на силикагеле L 40/100. ТГФ был очищен перегонкой над LiAlH4.

Общая методика синтеза 1-алкил-3-(2-хинолил)хинолиний галогенидов (Пв—д). Смесь 2,56 г (10 ммоль) 2,3'-бихинолила и 12 ммоль соответствующего галогенироизводного* в 20 мл ацетонитрила кипятят в течение 5 ч. Осадок отфильтровывают, промывают спиртом (3×10 мл), водой (3×30 мл), сущат.

1-Бутил-3-(2-хинолил) хинолиний иодид (Пв). Выход 4,08 г (93%). $T_{\Pi\Pi}$ 233...234 °C. Спектр ПМР (CDCl₃): 1,03 (3H, т, J=7,20 Гц, 1'-CH₂CH₂CH₂CH₃); 1,64 (2H, м, 1'-CH₂CH₂CH₃); 2,13 (2H, м, 1'-CH₂CH₂CH₂CH₃); 5,53 (2H, т, J=7,90 Гц, 1'-

^{*} Для получения соединения Πr используется смесь 1,52 r (12 ммоль) хлористого бензила и 2 r (12 ммоль) KI.

СН2CH2CH2CH3); 7,59 (1H, д. д, $J_{56} = 8,06$, $J_{67} = 7,06$ Гц, 6-H); 7,77 (1H, д. д, $J_{67} = 7,06$, $J_{78} = 8,33$ Гц, 7-H); 7,82 (1H, д, $J_{56} = 8,06$ Гц, 5-H); 7,91 (1H, д. д, $J_{6'7'} = 7,21$, $J_{7'8'} = 8,62$ Гц, 7'-H); 8,13 (1H, д. д, $J_{5'6'} = 8,45$, $J_{6'7'} = 7,21$ Гц, 6'-H); 8,22 (1H, д, $J_{78} = 8,33$ Гц, 8-H); 8,27 (1H, д, $J_{5'6'} = 8,45$ Гц, 5'-H); 8,36 (1H, д, $J_{34} = 8,54$ Гц, 4-H); 8,60 (1H, д, $J_{7'8'} = 8,62$ Гц, 8'-H); 8,95 (1H, д, $J_{34} = 8,54$ Гц, 3-H); 10,17 (1H, д, $J_{2'4'} = 1,70$ Гц, 4'-H); 10,88 м. д. (1H, д, $J_{2'4'} = 1,70$ Гц, 2'-H). Найдено, %: С 60,05; H 4,69; N 6,41. С22H21IN2. Вычислено, %: С 59,99; H 4,81; N 6,36.

1-Бензил-3-(2-хинолил) хинолиний иодид (Пг). Выход 4,16 г (88%). $T_{\rm III}$ 248...249 °C. Спектр ПМР (CDCl₃): 6,82 (2H, c, 1'-<u>CH</u>₂Ph); 6,82 (5H, c, 1'-<u>CH</u>₂Ph); 7,63 (1H, д. д, J_{56} = 8,08, J_{67} = 7,02 $\Gamma_{\rm II}$, 6-H); 7,80 (1H, д. д, J_{67} = 7,02, J_{78} = 8,31 $\Gamma_{\rm II}$, 7-H); 7,85 (1H, д, J_{56} = 8,08 $\Gamma_{\rm II}$, 5-H); 7,91 (1H, д. д, J_{67} = 7,23, J_{78} '= 8,60 $\Gamma_{\rm II}$, 7'-H); 8,08 (1H, д. д, $J_{5'6'}$ = 8,43, $J_{6'7'}$ = 7,23 $\Gamma_{\rm II}$, 6'-H); 8,19 (1H, д, J_{78} = 8,31 $\Gamma_{\rm II}$, 8-H); 8,34 (1H, д, $J_{5'6'}$ = 8,43 $\Gamma_{\rm II}$, 5'-H); 8,46 (1H, д, J_{34} = 8,53 $\Gamma_{\rm II}$, 4-H); 8,55 (1H, д, $J_{7'8'}$ = 8,60 $\Gamma_{\rm II}$, 8'-H); 8,99 (1H, д, J_{34} = 8,53 $\Gamma_{\rm II}$, 3-H); 10,14 (1H, д, $J_{2'4'}$ = 1,72 $\Gamma_{\rm II}$, 4'-H); 10,97 м. д. (1H, д, $J_{2'4'}$ = 1,72 $\Gamma_{\rm II}$, 2'-H). Найдено, %: C 63,35; H 3,94; N 5,95. C₂₅H₁₉IN₂. Вычислено, %: C 63,28; H 4,04; N 5,91.

1-Фенацил-3-(2-хинолил) хинолиний бромид (Пд). Выход 4,30 г (95%). $T_{\Pi\Pi}$ 260...262 °C. Спектр ПМР (ДМСО-D₆): 7,18 (2H, c, 1'-<u>CH</u>2COPh); 7,73 (1H, д. д, J_{56} = 8,06, J_{67} = 7,10 Гц, 6-H); 7,75 (3H, м, 3-H, 4-H, 5-H (Ph)); 7,86 (1H, д. д, J_{67} = 7,10, J_{78} = 8,32 Гц, 7-H); 7,95 (1H, д, J_{56} = 8,06 Гц, 5-H); 8,18 (1H, д. д, J_{67} = 7,25, J_{7} 's' = 8,67 Гц, 7'-H); 8,19 (1H, д, J_{78} = 8,32 Гц, 8-H); 8,21 (2H, д, J_{7} = 7,13 Гц, 2-H, 6-H (Ph)); 8,28 (1H, д. д, J_{56} ' = 8,49, J_{67} ' = 7,25 Гц, 6'-H); 8,52 (1H, д, J_{34} = 8,77 Гц, 4-H); 8,55 (1H, д, J_{56} ' = 8,49 Гц, 5'-H); 8,69 (1H, д, J_{7} 's' = 8,67 Гц, 8'-H); 8,77 (1H, д, J_{34} = 8,77 Гц, 3-H); 10,28 (1H, д, J_{24} ' = 1,83 Гц, 4'-H); 10,51 м. д. (1H, д, J_{24} ' = 1,83 Гц, 2'-H). Найдено, %: С 68,78; H 4,11; N 6,21. С26Н19ВгN2О. Вычислено, %: С 68,71; H 4,22; N 6,17.

4'-Дикарбоэтоксиметил-1'-метил-1',4'-дигидро-2,3'-бихинолил (Ша). К раствору 0,48 г (3 ммоль) малонового эфира в 10 мл абсолютного ТГФ добавляют 0,17 г (7 ммоль) гидрида натрия и перемешивают в течение 5 мин. Далее к реакционной смеси добавляют 1 г (2,5 ммоль) 1-метил-3-(2-хинолил) хинолиний иодида и кипятят 1,5 ч при перемешивании в атмосфере азота. После этого реакционную смесь обрабатывают 2 мл спирта и выливают в 50 мл воды, экстрагируют бензолом (3 × 30 мл). Органический слой отделяют, сушат над сульфатом натрия и упаривают, получают желтое масло, кристаллизующееся при добавлении эфира. Выход 0,84 г (78%). $T_{\text{ПЛТ}}$ 128...129 °C (из эфира). Спектр ПМР (CDCl₃): 1,00 (3H, т, J = 5.65 Гп, A-CH₂CH₃); 1,08 (3H, т, J = 5,65 Гц, B-CH₂CH₃); 3,42 (3H, c, 1'-CH₃); 3,77 (1H, д, J = 5,80 Гц, 4'-<u>CH</u>(CO₂Et)₂); 3,84 (2H, к, J = 5,65 Γ ц, $A-\underline{CH_2CH_3}$); 3,96 (2H, к, J = 5,65 Γ ц, $B-\underline{CH_2CH_3}$); 5,54 (1H, д, J = 5,80 Γ ц, 4'-H); 6,89 (1H, π , J_7 'g' = 8,04 Γ π , 8'-H); 7,01 (1H, π . π , J_5 'g' = 7,62, J_6 '7' = 7,79 Γ π , 6'-H); 7,24 (1H, д. д, $J_{67'} = 7,79$, $J_{7'8'} = 8,04$ Гц, 7'-H); 7,37 (1H, д. д, $J_{56} = 7,98$, $J_{67} = 7,46$ Гц, 6-H); 7,45 (1H, с, 2'-H; 7,53 (1H, π , 7,56'=7,62 Γ π , 5'-H); 7,59 (1H, π , 7,54=8,54 Γ π , 7,50 (1H, 7,50); 7,50 (1H, 7,50); 7,500 (1H, 7,500); 7,500 (1H, 7,50 $J_{78} = 8,55$ Γ и, 7-H); 7,69 (1H, д, $J_{56} = 7,98$ Γ и, 5-H); 7,92 (1H, д, $J_{34} = 8,54$ Γ и, 4-H); 7,96 м. д. (1H, д, $J_{78} = 8,55$ Γ ц, 8-H). Найдено, %: С 72,59; H 5,93; N 6,57. С26H26N2O4. Вычислено, %: С 72,52; H 6,09; N 6,53.

1'-Метил-4'-фенацил-1',4'-дигидро-2,3'-бихинолил (Шб). Смесь 1 г (2,5 ммоль) 1-метил-3-(2-хинолил) хинолиний иодида, 0,36 г (3 ммоль) ацетофенона и 0,17 г (7 ммоль) гидрида натрия в 10 мл абсолютного ТГФ перемешивают в атмосфере азота при комнатной температуре в течение 2 ч. После этого реакционную смесь обрабатывают 2 мл спирта и выливают в 50 мл воды, экстрагируют бензолом (3 × 30 мл). Органический слой отделяют, сушат над сульфатом натрия, упаривают. Остаток хроматографируют с использованием в качестве элюента бензола, собирают первую окрашенную фракцию, растворитель упаривают. Выход $0.97 \, \mathrm{r} \, (81 \, \%)$. $T_{\mathrm{ПЛ}} \, 138 ... 139 \, ^{\circ}\mathrm{C}$ (из бензола с гексаном). R_f 0,56 (Silufol UV-254, этилацетат—гексан, 1:1). Спектр ПМР (ацетон-D₆): 2,96 (1H, д. д, $J_{AB} = 13,15$, $J_{4'A} = 9,39 \, \Gamma$ ц, $4' - C\underline{H}^A H^B COPh$); 3,47 (3H, с, 1'-CH₃); 3,52 (1H, д. д, 7,64 Γ u, 5'-H); 7,18 (1H, д. д, J_{6} '7' = 7,79, J_{7} '8' = 8,03 Γ u, 7'-H); 7,42 (1H, д. д, J_{56} = 7,98, J_{67} = 7,04 Γ u, 5'-H); 7,42 (1H, д. д, J_{56} = 7,98, J_{67} = 7,04 Γ u, 5'-H); 7,42 (1H, д. д, J_{56} = 7,98, J_{67} = 7,98, J $7,37 \Gamma \text{m}$, 6-H); 7,58 (3H, M, 3-H, 4-H, 5-H (Ph)); 7,65 (1H, <math>m, m, (1H, c, 2'-H); 7,80 (1H, μ , $J_{56} = 7,98$ μ , J_{5-H}); 7,83 (1H, μ , $J_{34} = 8,97$ μ , J_{7}); 7,94 (1H, μ , $J_{78} = 1$); 7,95 (1H, μ , $J_{78} = 1$); 7,85 (1H, μ , $J_{78} = 1$); 7,87 (1H, μ , $J_{78} = 1$); 7,96 (1H, μ , $J_{78} = 1$); 7,97 (1H, μ , $J_{78} = 1$); 7,97 (1H, μ , $J_{78} = 1$); 7,97 (1H, μ , $J_{78} = 1$); 7,98 (1H, μ , 8,57 Γ m, 8-H); 8,09 (1H, π , J_{34} = 8,97 Γ m, 4-H); 8,26 μ . π . (2H, π , J = 7,26 Γ m, 2-H, 6-H (Ph)). Найдено, %: С 83,13; Н 5,54; N 7,21. С27H22N2O. Вычислено, %: С 83,05; Н 5,68; N 7,17.

Общая методика синтеза 1'-алкил-4'-(3-индолил)-1',4'-дигидро-2,3'-бихинолилов (Шв—е). К раствору 0,32 г (2,75 ммоль) индола в 10 мл сухого ТГФ добавляют 0,13 г (5,5 ммоль) гидрида натрия и перемешивают в течение 5 мин. Далее к реакционной смеси добавляют 2,5 ммоль

1-алкил-3-(2-хинолил) хинолиний галогенида и перемешивают в атмосфере азота при комнатной температуре в течение 3 ч. После этого реакционную смесь обрабатывают 2 мл спирта и выливают в 50 мл воды, экстрагируют этилацетатом $(3 \times 30 \text{ мл})$. Органический слой отделяют, сушат над сульфатом натрия и упаривают, остаток перекристаллизовывают из бензола или бензола с гексаном.

4'-(3-Индолил)-1'-метил-1',4'-дигидро-2,3'-бихинолил (IIIB). Выход 0,89 г (92%). $T_{\rm III}$ 132...133 °C (из бензола). Спектр ПМР (CDCl3): 3,52 (3H, c, 1'-CH3); 5,87 (1H, c, 4'-H); 6,88 (1H, д. д., J-5'6' = 7,65, J-6'7' = 7,77 Γ - Π , 6'-H); 6,90 (1H, д., J-7'8' = 8,02 Γ - Π , 8'-H); 7,11 (3H, м., 7'-H, 5''-H, 6''-H); 7,13 (1H, д., J-NH-2"H=2,31 Γ - Π , 2''-H); 7,21 (1H, д., J-6"7" = 7,56 Γ - Π , 7''-H); 7,35 (1H, д. д., J-56 = 8,04, J-67 = 7,42 Γ - Π , 6-H); 7,43 (1H, д. д., J-5'6' = 7,65 Γ - Π , 7'-H); 7,58 (1H, д. д., J-67 = 7,42, J-78 = 8,60 Γ - Π , 7-H); 7,67 (1H, д., J-56 = 8,04 Γ - Π , 5-H); 7,70 (1H, д., J-34 = 8,77 Γ - Π , 3-H); 7,81 (1H, д., J-78 = 8,60 Γ - Π , 8-H); 7,90 (1H, д., J-4"5" = 7,96 Γ - Π , 4''-H); 7,92 (1H, с., 2'-H); 7,93 (1H, д., J-34 = 8,77 Γ - Π , 4-H); 9,83 м. д. (1H, уш. с., NH). Найдено, %: C 83,68; H 5,47; N 10,85.

4'-(3-Индолил)-1'-этил-1',4'-дигидро-2,3'-бихинолил (HIг). Выход 0,75 г (75%). $T_{\rm ПЛ}$ 121...123 °C (из бензола). Спектр ПМР (ацетон-D₆): 1,47 (3H, т, J = 6,95 Гц, 1'-CH₂CH₃); 4,06 (3H, м, $J_{\rm TEM}$ = 14,99, $J_{\rm BИЦ}$ = 6,95 Гц, 1'-CH₂CH₃); 6,10 (1H, с, 4'-H); 6,84 (1H, д. д, $J_{\rm 5'6'}$ = 7,63, $J_{\rm 6'7'}$ = 7,77 Гц, 6'-H); 6,96 (2H, м, 5''-H, 6''-H); 7,08 (1H, д, $J_{\rm NH-2''}$ = 2,19 Гц, 2''-H); 7,11 (1H, д. д, $J_{\rm 6'7'}$ = 7,77, $J_{\rm 7'8'}$ 8,06 Гц, 7'-H); 7,21 (1H, д, $J_{\rm 7'8'}$ = 8,06 Гц, 8'-H); 7,26 (1H, д, $J_{\rm 6''7'}$ = 7,58 Гц, 7''-H); 7,32 (1H, д. д, $J_{\rm 56}$ = 8,02, $J_{\rm 67}$ = 7,49 Гц, 6-H); 7,41 (1H, д, $J_{\rm 5'6'}$ = 7,63 Гц, 5'-H); 7,58 (1H, д. д, $J_{\rm 67}$ = 7,49, $J_{\rm 78}$ = 8,59 Гц, 7-H); 7,68 (1H, д, $J_{\rm 5'6}$ = 8,02 Гц, 5-H); 7,70 (1H, д, $J_{\rm 34}$ = 8,77 Гц, 3-H); 7,88 (1H, д, $J_{\rm 78}$ = 8,59 Гц, 8-H); 7,90 (1H, д, $J_{\rm 4''5''}$ = 7,89 Гц, 4''-H); 7,92 (1H, с, 2'-H); 7,95 (1H, д, $J_{\rm 34}$ = 8,77 Гц, 4-H); 9,84 м. д. (1H, уш. с, NH). Найдено, %: C 83,84; H 5,63; N 10,53. C₂₈H₂₃N₃. Вычислено, %: C 83,75; H 5,78; N 10,47.

1'-Бутил-4'-(3-индолил)-1',4'-дигидро-2,3'-бихинолил (Шл). Выход 0,82 г (76%). $T_{\text{ПЛ}}$ 107...108 °C (из бензола с гексаном). Спектр IIMP (ацетон-D₆): 1,04 (3H, т, J = 7,17 Γ ц, 1'-CH₂CH₂CH₂CH₃); 1,55 (2H, м, 1'-CH₂CH₂CH₂CH₃); 1,58 (2H, м, 1'-CH₂CH₂CH₂CH₃); 3,89 (1H, м, 1'-CH^AH^BCH₂CH₂CH₂CH₃); 4,03 (1H, м, 1'-CH^AH^BCH₂CH₂CH₃); 6,10 (1H, с, 4'-H); 6,83 (1H, д. д, J5'6'=7,63, J6'7'=7,78 Γ ц, 6'-H); 6,96 (2H, м, 5''-H, 6''-H); 7,04 (1H, д, JNH-2"=2,20 Γ ц, 2"'-H); 7,09 (1H, д. д, J6'7'=7,78, J7'8'=8,06 Γ ц, 7'-H); 7,23 (1H, д, J7'8'=8,06 Γ ц, 8'-H); 7,25 (1H, д, J6"7"=7,61 Γ 1, 7"-H); 7,30 (1H, д. д, J56=8,01, J6"7"=7,41 Γ 1, 6-H); 7,40 (1H, д, J5'6'=7,63 Γ 1, 5'-H); 7,57 (1H, д. д, J6"=7,41, J78=8,56 Γ 1, 7-H); 7,68 (1H, д, J56=8,01 Γ 1, 5-H); 7,69 (1H, д, J34=8,78 Γ 1, 3-H); 7,87 (1H, д, J78=8,56 Γ 1, 8-H); 7,90 (1H, c, 2'-H); 7,92 (1H, д, J4"5"=7,90 Γ 1, 4"'-H); 7,94 (1H, д, J34=8,78 Γ 1, 4-H); 9,82 м. д. (1H, уш. c, NH). Найдено, %: C 83,97; H 6,18; N 9,85. C₃₀H₂7N₃. Вычислено, %: C 83,87; H 6,34; N 9,79.

1'-Бензил-4'-(3-индолил)-1',4'-дигидро-2,3'-бихинолил (IIIe). Выход 0,95 г (82%). $T_{\Pi\Pi}$ 134...135 °C (из бензола). Спектр ПМР (ДМСО- D_6): 5,16 (1H, д, J_{AB} = 12,89 Гц, 1'- CH^AH^B Ph); 5,21 (1H, д, J_{AB} = 12,89 Гц, 1'- CH^AH^B Ph); 6,06 (1H, c, 4'-H); 6,77 (1H, д, $J_{7'8'}$ = 8,06 Гц, 8'-H); 6,86 (1H, д. д, $J_{5'6'}$ = 7,63, $J_{6'7'}$ = 7,80 Гц, 6'-H); 6,95 (3H, м, 7'-H, 5''-H, 6''-H); 7,11 (1H, c, 2''-H); 7,21 (1H, д, $J_{6''7''}$ = 7,57 Гц, 7''-H); 7,32 (1H, д. д, J_{56} = 8,01, J_{67} = 7,51 Гц, 6-H); 7,38 (3H, м, 3-H, 4-H, 5-H (Ph)); 7,41 (1H, д, $J_{5'6'}$ = 7,63 Гц, 5'-H); 7,44 (2H, м, 2-H, 6-H (Ph)); 7,59 (1H, д. д, J_{67} = 7,51, J_{78} = 8,54 Гц, 7-H); 7,70 (1H, д, J_{56} = 8,01 Гц, 5'-H); 7,73 (1H, д, J_{34} = 8,79 Гц, 3-H); 7,80 (1H, д, J_{78} = 8,54 Гц, 8-H); 7,83 (1H, д, $J_{4''5''}$ = 7,88 Гц, 4''-H); 8,01 (1H, д, J_{34} = 8,79 Гц, 4-H); 8,03 (1H, c, 2'-H); 10,52 м. д. (1H, уш. c, NH). Найдено, %: C 85,67; H5,16; N 9,17. C 33H25N3. Вычислено, %: C 85,58; H5,30; N 9,12.

Общая методика синтеза 1'-алкил-4'-циано-1',4'-дигидро-2,3'-бихинолилов (ПТж—к). Смесь 2,5 ммоль 1-алкил-3-(2-хинолил) хинолиний галогенида и 0,17 г (3,5 ммоль) цианида натрия в 10 мл ТГФ кипятят при перемешивании в течение 3 ч. Реакционную смесь выливают в 200 мл воды, выпавший осадок отфильтровывают, сушат и перекристаллизовывают из бензола или бензола с гексаном. Выход до перекристаллизации — близкий к количественному.

1'-Метил-4'-циано-1',4'-дигидро-2,3'-бихинолил (ПІж). Выход 0,62 г (84%). $T_{\text{ШЛ}}$ 195...196 °C (из бензола). Спектр ПМР (CDCl₃): 3,42 (3H, c, 1'-CH₃); 5,88 (1H, c, 4'-H); 6,93 (1H, д, J_7 '8' = 8,07 Γ ц, 8'-H); 7,12 (1H, д. д, J_5 '6' = 7,62, J_6 '7' = 7,78 Γ ц, 6'-H); 7,33 (1H, д. д, J_5 '7' = 7,78, J_7 '8' = 8,07 Γ ц, 7'-H); 7,35 (1H, c, 2'-H); 7,43 (1H, д. д, J_5 6 = 8,01, J_6 7 = 7,36 Γ ц, 6-H); 7,48 (1H, д. д, J_5 6' = 7,62 Γ 1, 5'-H); 7,54 (1H, д. д, J_3 4 = 8,85 Γ 1, 3-H); 7,66 (1H, д. д, J_6 7 = 7,36, J_7 8 = 8,24 Γ 1, 7,72 (1H, д. J_5 6 = 8,01 Γ 1, 5'-H); 8,00 (1H, д. J_3 4 = 8,85 Γ 1, 4-H); 8,05 м. д. (1H, д. J_7 8 = 8,24 Γ 1, 8-H). Найдено, %: C 80,85; H 4,93; N 14,22. C₂₀H₁₅N₃. Вычислено, %: C 80,77; H 5,09; N 14,14.

4'-Циано-1'-этил-1',4'-дигидро-2,3'-бихинолил (Ш3) Выход 0,64 г (82%). $T_{\rm ШЛ}$ 158...159 °C (из бензола с гексаном). Спектр ПМР (CDCl3): 1,45 (3H, т, J=6,93 $\Gamma_{\rm H}$, 1'-CH2CH3); 3,40 (2H, м, 1'-CH2CH3); 5,87 (1H, с, 4'-H); 6,92 (1H, д, J_7 '8'=8,02 $\Gamma_{\rm H}$, 8'-H); 7,10 (1H, д. д, J_5 '6'=7,67, J_6 '7'=7,81 $\Gamma_{\rm H}$, 6'-H); 7,32 (1H, д. д, J_6 '7'=7,81, J_7 '8'=8,02 $\Gamma_{\rm H}$, 7'-H); 7,33 (1H, с, 2'-H); 7,43 (1H, д. д, J_5 6=8,02, J_6 7=7,55 $\Gamma_{\rm H}$, 6-H); 7,47 (1H, д, J_5 6'=7,67 $\Gamma_{\rm H}$, 5'-H); 7,54 (1H, д, J_3 4=8,84 $\Gamma_{\rm H}$, 3-H); 7,66 (1H, д. д, J_6 7=7,55, J_7 8=8,25 $\Gamma_{\rm H}$, 7-H); 7,72 (1H, д, J_5 6=8,02 $\Gamma_{\rm H}$, 5-H); 8,00 (1H, д, J_3 4=8,84 $\Gamma_{\rm H}$, 4-H); 8,05 м. д. (1H, д, J_7 8=8,25 $\Gamma_{\rm H}$, 8-H). Найдено, %: С 81,07; H 5,35; N 13,58. С21H17N3. Вычислено, %: С 80,99; H 5,51; N 13,50.

1'-Бензил-4'-циано-1',4'-дигидро-2,3'-бихинолил (ППи). Выход 0,76 г (82%). $T_{\Pi\Pi}$ 156...157 °C (из бензола). Спектр ПМР (ДМСО-D₆): 5,15 (1H, д, J_{AB} = 12,91 Γ ц, 1'- $C\underline{H}^AH^B$ Ph); 5,21 (1H, д, J_{AB} = 12,91 Γ ц, 1'- $C\underline{H}^AH^B$ Ph); 5,93 (1H, с, 4'-H); 7,02 (1H, д, $J_{7'8'}$ = 8,08 Γ ц, 8'-H); 7,08 (1H, д. д, $J_{5'6'}$ = 7,61, $J_{6'7'}$ = 7,80 Γ ц, 6'-H); 7,25 (1H, д. д, $J_{6'7'}$ = 7,80, $J_{7'8'}$ = 8,08 Γ ц, 7'-H); 7,38 (5H, м, 1'- CH_2 Ph); 7,48 (1H, д. д, J_{56} = 8,02, J_{67} = 7,35 Γ ц, 6-H); 7,58 (1H, д, $J_{5'6'}$ = 7,61 Γ ц, 5'-H); 7,72 (1H, д. д, J_{67} = 7,35, J_{78} = 8,26 Γ ц, 7-H); 7,87 (1H, д, J_{56} = 8,02 Γ ц, 5-H); 7,94 (1H, д, J_{34} = 8,86 Γ ц, 3-H); 7,96 (1H, д, J_{78} = 8,26 Γ ц, 8-H); 8,13 (1H, с, 2'-H); 8,21 м. д. (1H, д, J_{34} = 8,86 Γ ц, 4-H). Найдено, %: C 83,70; H 4,97; N 11,33. C_{26} H₁₉N₃. Вычислено, %: C 83,61; H 5,13; N 11,26.

1'-Фенацил-4'-циано-1',4'-дигидро-2,3'-бихинолил (Шк). Выход 0,76 г (76%). $T_{\rm III}$ 194...195 °C (из бензола). Спектр ПМР (ДМСО-D₆): 5,53 (1H, д, $J_{\rm AB}$ = 13,21 Γ ц, 1'-СН^AH^BCOPh); 5,69 (1H, д, $J_{\rm AB}$ = 13,21 Γ ц, 1'-СН^AH^BCOPh); 5,92 (1H, с, 4'-H); 6,93 (1H, д, J_{7} 's' = 8,09 Γ ц, 8'-H); 7,13 (1H, д. д, J_{5} '6' = 7,64, J_{6} '7' = 7,81 Γ ц, 6'-H); 7,26 (1H, д. д, J_{6} '7' = 7,81, J_{7} 's' = 8,09 Γ ц, 7'-H); 7,48 (1H, д. д, J_{56} = 8,03, J_{67} = 7,55 Γ ц, 6-H); 7,58 (1H, д, J_{56} ' = 7,64 Γ ц, 5'-H); 7,65 (2H, м, 3-H, 5-H (Ph)); 7,71 (1H, д. д, J_{67} = 7,55, J_{78} = 8,24 Γ ц, 7-H); 7,74 (1H, м, 4-H (Ph)); 7,84 (1H, д, J_{56} = 8,03 Γ ц, 5-H); 7,87 (1H, д, J_{34} = 8,85 Γ ц, 3-H); 7,95 (1H, с, 2'-H); 7,97 (1H, д, J_{78} = 8,24 Γ ц, 8-H); 8,12 (2H, д, J_{7} = 7,15 Γ ц, 2-H, 6-H (Ph)); 8,22 м. д. (1H, д, J_{34} = 8,85 Γ ц, 4-H). Найдено, %: C 80,85; H 4,65; N 10,53. С27H₁₉N₃O. Вычислено, %: C 80,77; H 4,77; N 10,47.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 96-03-32036а).

СПИСОК ЛИТЕРАТУРЫ

- Аксенов А. В., Аксенова И. В., Боровлев И. В., Смушкевич Ю. И. // ХГС. 1998. № 9. — С. 1214.
- 2. Романенко И. В., Клюев Н. А., Шейкман А. К. // Вопросы химии и химической технологии. 1979. № 57. С. 78.
- 3. Kröhnke F., Dickhäuser H., Vogt I. // Lieb. Ann. Chem. 1961. Bd 644. S. 93.
- 4. Поддубный И. С. // ХГС. 1995. № 6. С. 774.

Ставропольский государственный университет, Ставрополь 355009, Россия Поступило в редакцию 15.01.98

Российский химико-технологический университет, Москва 125190 e-mail: sgpi.stvpl@rex.iasnet.ru