Е. Сулоева, М. Юре, Э. Гудриниеце, М. Петрова, А. Гутцайт^а

СИНТЕЗ 2,3-ДИГИДРОИМИДАЗО[1,2-*а*]ПИРИДИНОВ НА ОСНОВЕ 1,3-ДИКЕТОНОВ

Синтезирован ряд 2-гидрокси-, 2-хлор- и 2-(2-гидроксиэтиламино)-6арил-4-полифторалкил-3-цианопиридинов. Реакциями последних с хлорокисью фосфора получены фторсодержащие 2,3-дигидроимидазо[1,2-*a*]пиридины.

Ключевые слова: 2-(2-гидроксиэтиламино)пиридины, 2,3-дигидроимидазо[1,2-*а*]пиридины, пиридин-2-оны, 2-хлорпиридины.

В продолжение исследований в области малоизученных 2,3-дигидроимидазо[1,2-*a*]пиридинов [1–3] мы синтезировали ряд новых их производных, содержащих фторированные заместители. В качестве исходных использовали фторсодержащие 1,3-дикетоны **1а–g**, конденсация которых с цианоацетамидом (ЦАА) в присутствии оснований [4–6] приводит к пиридин-2-онам. Реакция осуществлена кипячением компонентов в этаноле в присутствии ацетата аммония. Пиридин-2-оны **2а–g** представляют собой желтоватые кристаллические вещества, обладающие голубой флуоресценцией как в растворах, так и в кристаллическом состоянии. Положение арильного и полифторалкильного заместителей в пиридин-2-онах **2а–g** соотнесено нами с ранее проведенными рентгеноструктурными исследованиями в данном ряду [7, 8].

1–5 a $R = CF_3$, Ar = p-MeC₆H₄; **b** $R = C_3F_7$, Ar = Ph; **c** $R = C_4F_9$, Ar = Ph; **d** $R = C_6F_{13}$, Ar = Ph; **e** $R = (CF_2)_2H$, Ar = Ph; **f** $R = (CF_2)_4H$, Ar = Ph; **g** $R = CF_3$, Ar = p-BrC₆H₄

947

Сое- дине-	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл.,	Время реакции.	Вы- ход,
ние		С	Н	Ν	°C	Ч	%
2a	$C_{14}H_9F_3N_2O$	<u>60.70</u> 60.44	<u>3.03</u> 3.26	<u>10.00</u> 10.07	296–298	3	75
2b	$C_{15}H_7F_7N_2O$	<u>48.66</u> 49.47	<u>2.06</u> 1.94	<u>8.13</u> 7.69	254–255	5	52
2c	$C_{16}H_{7}F_{9}N_{2}O$	<u>46.60</u> 46.39	<u>1.73</u> 1.70	<u>6.69</u> 6.76	242–245	5	57
2d	$C_{18}H_7F_{13}N_2O$	<u>42.69</u> 42.04	<u>1.40</u> 1.37	<u>5.38</u> 5.45	238–240	6	76
2e	$C_{14}H_8F_4N_2O$	<u>56.63</u> 56.77	<u>2.52</u> 2.74	<u>9.36</u> 9.46	251–253 (243–244[4])	4	48
2f	$C_{16}H_8F_8N_2O$	<u>47.97</u> 48.50	<u>2.34</u> 2.04	<u>7.00</u> 7.07	208–210	6	55
2g	$C_{13}H_6BrF_3N_2O$	<u>44.97</u> 45.51	<u>1.74</u> 1.76	<u>8.12</u> 8.16	269–271	5	70
3a	$C_{14}H_8ClF_3N_2$	<u>56.67</u> 56.68	<u>2.70</u> 2.72	<u>9.43</u> 9.44	159–160	8	44
3b	$C_{15}H_6ClF_7N_2$	<u>47.61</u> 47.08	<u>1.60</u> 1.58	<u>7.24</u> 7.32	92–94	8	85
3c	$C_{16}H_6ClF_9N_2$	<u>44.99</u> 44.42	<u>1.33</u> 1.40	<u>6.35</u> 6.47	86–88	8	74
3e	$C_{14}H_7ClF_4N_2$	<u>53.19</u> 53.44	<u>2.14</u> 2.24	<u>8.79</u> 8.90	104–106	8	58
3f	$C_{16}H_7ClF_8N_2$	<u>46.19</u> 46.34	<u>1.90</u> 1.70	<u>6.60</u> 6.76	78–80	8	88
4 a	$C_{16}H_{14}F_3N_3O$	<u>59.76</u> 59.81	<u>4.42</u> 4.39	<u>13.11</u> 13.08	157–158	6	92
4b	$C_{17}H_{12}F_7N_3O$	<u>50.20</u> 50.13	<u>2.94</u> 2.97	<u>10.25</u> 10.32	144–145	4	80
4c	$C_{18}H_{12}F_9N_3O$	<u>47.22</u> 47.28	<u>2.58</u> 2.65	<u>9.11</u> 9.19	110–112	3	66
4 e	$C_{16}H_{13}F_4N_3O$	<u>55.79</u> 56.64	<u>3.66</u> 3.86	<u>12.02</u> 12.38	110–112	6	70
4f	$C_{18}H_{13}F_8N_3O$	<u>49.01</u> 49.21	<u>2.93</u> 2.98	<u>9.49</u> 9.57	122–123	4	86
5a	$C_{16}H_{12}F_3N_3$	<u>63.21</u> 63.36	<u>3.97</u> 3.99	<u>13.76</u> 13.85	156–158	1	73
5b	$C_{17}H_{10}F_7N_3$	<u>52.45</u> 52.45	<u>2.47</u> 2.59	<u>10.75</u> 10.79	182–184	1	60
5c	$C_{18}H_{10}F_9N_3$	<u>49.16</u> 49.22	<u>2.31</u> 2.29	<u>9.50</u> 9.57	158–160	1	87
5f	$C_{18}H_{11}F_8N_3$	<u>51.32</u> 51.32	<u>2.57</u> 2.63	<u>9.92</u> 9.97	134–136	1	67
948							

Характеристики синтезированных соединений

Таблица 1

Спектральные характеристики синтезированных соединений

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н (CDCl ₃), б, м. д., <i>J</i> (Гц)
2a*	3200–2600, 2235, 1660, 1625, 1580, 1560	2.38 (3H, c, CH ₃); 7.22 (1H, c, =CH–); 7.38 (2H, м, <i>J</i> = 7.5, C ₆ H ₄); 7.91 (2H, м, <i>J</i> = 7.5, C ₆ H ₄); 13.47 (1H, уш. c, NH)
2b*	3200–2650, 2237, 1650, 1630, 1608, 1575, 1553	7.13 (1H, с, =CH–); 7.57 (3H, м, C ₆ H ₅); 7.97 (2H, м, C ₆ H ₅); 12.63 (1H, уш. с, NH)
2c*	3200–2600, 2236, 1650, 1605, 1578, 1542, 1524	7.19 (1H, с, =CH–); 7.58 (3H, м, C ₆ H ₅); 7.99 (2H, м, C ₆ H ₅); 13.38(1H, уш. с, NH)
2d*	3150–2600, 2227, 1653, 1605, 1577, 1549	7.08 (1H, с, =CH–); 7.53 (3H, м, C ₆ H ₅); 7.94 (2H, м, C ₆ H ₅); 13.30 (1H, уш. с, NH)
2e*	3250–2650, 2240, 1670, 1625, 1590, 1565	6.91 (1H, т. т, <i>J</i> = 52.5, <i>J</i> = 3.8, CF ₂ –H); 7.02 (1H, с, =CH–); 7.58 (3H, м, C ₆ H ₅); 7.94 (2H, м, C ₆ H ₅); 12.33 (1H, уш. с, NH)
2f*	3200–2650, 2236, 1648, 1630, 1604, 1576, 1533	7.08 (1H, c, =CH–); 7.22 (1H, т. т, <i>J</i> = 55, <i>J</i> = 5, CF ₂ –H); 7.58 (3H, м, C ₆ H ₅); 7.99 (2H, м, C ₆ H ₅); 13.55 (1H, уш. c, NH)
2g*	3220–2700, 2240, 1658, 1620, 1575, 1540	7.36 (1H, c, =CH–); 7.84 (4H, м, C ₆ H ₄); 11.93 (1H, уш. c, NH)
3a	3087, 2231, 1593, 1543	2.38 (3H, c, CH ₃); 7.38 (2H, м, <i>J</i> = 8, C ₆ H ₄); 8.14 (2H, м, <i>J</i> = 8, C ₆ H ₄); 8.45 (1H, c, =CH–)
3b	3079, 2239, 1585, 1537	7.53 (3H, м, C ₆ H ₅); 7.92 (1H, с, =CH–); 8.07 (2H, м, C ₆ H ₅)
3c	2231, 1583, 1543	7.54 (3H, м, C ₆ H ₅); 7.89 (1H, с, =CH–); 8.07 (2H, м, C ₆ H ₅)
3e	2235, 1594, 1542	6.18 (1H, т. т, <i>J</i> = 54, <i>J</i> = 2, CF ₂ –H); 7.56 (3H, м, C ₆ H ₅); 7.92 (1H, с, =CH–); 8.09 (2H, м, C ₆ H ₅)
3f	3059, 3031, 2239, 1587, 1537	6.09 (1H, т. т, <i>J</i> = 52, <i>J</i> = 5, CF ₂ –H); 7.52 (3H, м, C ₆ H ₅); 7.89 (1H, с, =CH–); 8.07 (2H, м, C ₆ H ₅)
4 a	3391, 2951, 2215, 1585, 1531	2.32 (1H, уш. м, OH); 2.38 (3H, c, CH ₃); 3.85 (4H, м, 2CH ₂); 5.94 (1H, уш. м, NH); 7.27 (1H, c, =CH–); 7.32 (2H, м, <i>J</i> = 8, C ₆ H ₄); 7.89 (2H, м, <i>J</i> = 8, C ₆ H ₄)
4b	3363, 2939, 2219, 1590, 1576, 1542	2.56 (1H, уш. м, OH); 3.89 (4H, м, 2CH ₂); 6.09 (1H, уш. с, NH); 7.25 (1H, с, =CH–); 7.59 (3H, м, C ₆ H ₅); 8.04 (2H, м, C ₆ H ₅)
4c	3411, 2943, 2211, 1577, 1529	2.40 (1H, уш. с, OH); 3.89 (4H, м, 2CH ₂); 6.05 (1H, уш. м, NH); 7.29 (1H, с, =CH–); 7.54 (3H, м, C ₆ H ₅); 8.03 (2H, м, C ₆ H ₅)
4 e	3575, 3335, 3011, 2975, 2939, 2891, 2219, 1580, 1532	2.69 (1H, уш. м, OH); 3.89 (4H, м, 2CH ₂); 6.12 (2H, т. т, <i>J</i> = 54, <i>J</i> = 3, CF ₂ –H, уш. м, NH); 7.27 (1H, с, =CH–); 7.54 (3H, м, C ₆ H ₅); 8.05 (2H, м, C ₆ H ₅)
4f	3539, 3383, 2223, 1580, 1573, 1537	2.43 (1H, уш. т, <i>J</i> = 5, OH); 3.87 (4H, м, 2CH ₂); 6.07 (1H, уш. м, NH); 6.17 (1H, т. т, <i>J</i> = 52, <i>J</i> = 5, CF ₂ –H); 7.29 (1H, с, =CH–); 7.59 (3H, м, C ₆ H ₅); 8.05 (2H, м, C ₆ H ₅)
5a	2219, 1645, 1541, 1519	2.41 (3H, c, CH ₃); 4.07 (4H, м, 2CH ₂); 5.81 (1H, c, =CH–); 7.34 (4H, м, C ₆ H ₄)
5b	2243, 2648, 1536	4.05 (4H, м, 2CH ₂); 5.69 (1H, с, =CH–); 7.49 (5H, м, C ₆ H ₅)
5c	2223, 1642, 1542	4.09 (4H, м, 2CH ₂); 5.72 (1H, с, =CH–); 7.52 (5H, м, C ₆ H ₅)
5f	2223, 1648, 1536	4.05 (4H, м, 2CH ₂); 5.67 (1H, с, =CH–); 6.12 (1H, т. т, <i>J</i> = 52, <i>J</i> = 5, CF ₂ –H); 7.52 (5H, м, C ₆ H ₅)

* Спектр ЯМР ¹Н зарегистрировали в ДМСО-d₆.

Замена гидроксигруппы на хлор в 2-гидроксипиридинах (пиридин-2онах) **2а–с,е,f** осуществлена их кипячением в избытке $POCl_3$ в присутствии ДМФА. Соответствующие хлорпиридины **3а–с,е,f** получены с выходами 44–88 %.

Благодаря наличию в 2-хлорпиридинах при С(3) электроноакцепторного заместителя атом С(2) становится активным центром в реакциях с нуклеофилами. Взаимодействием 2-хлор-3-цианопиридинов **3а-с,е,f** с аминоэтанолом в описанных ранее условиях [1, 9] мы получили соответствующие 2-(2-гидроксиэтиламино)пиридины 4а-с,е,f с выходами 66-92 %. Взаимодействием последних с хлорокисью фосфора нам удалось получить ряд ранее не описанных 2,3-дигидроимидазо[1,2-a]пиридинов **5а–с,f**, содержащих фторированные заместители. Темно-красные имидазопиридины плавятся при 134-184 °C. Для их ИК спектров характерна полоса поглощения связи C=N в области 1642-1648 и v C≡N в области 2219-2243 см⁻¹. В спектрах ЯМР 1 Н этих соединений (в CDCl₃) метиленовые протоны фрагмента N-CH2-CH2-N практически эквивалентны по химическим сдвигам и наблюдаются в виде узкого мультиплетного сигнала в интервале 4.03-4.09 м. д. Сигналы протонов арильного заместителя представляют собой мультиплет с центром в интервале 7.34-7.52 м. д. Сигнал атома водорода пиридинового цикла наблюдается в виде синглета в диапазоне 5.67-5.74 м. д., для него характерен сильнопольный сдвиг по сравнению с сигналом протона при С₍₅₎ пиридинов 2-4.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Specord IR-75 в вазелиновом масле (призма NaCl, область 1500–1800 см⁻¹) и гексахлорбутадиене (призма LiF, область 2000–3600 см⁻¹). Спектры ЯМР ¹Н регистрировали на спектрометре Bruker WH-90/DS (90 МГц), внутренний стандарт ГМДС. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли с помощью TCX на пластинках Silufol UV-254 в системе этанол–хлороформ, 1:9.

Данные о синтезированных соединениях приведены в таблицах 1, 2.

6-Арил-4-полифторалкил-3-цианопиридин-2-оны (2а–g). Смесь 15 ммоль соответствующего дикетона **1а–**g, 1.5 г (18 ммоль) ЦАА и 1.4 г (18 ммоль) ацетата аммония кипятят в 5 мл этанола 3–6 ч. Реакционную смесь оставляют на 8 ч при комнатной температуре. Осадок перекристаллизовывают из смеси ДМФА–вода, 2:1. Получают желтоватые кристаллические вещества **2а–**g.

6-Арил-4-полифторалкил-2-хлор-3-цианопиридины (За-с,е,f). К раствору 6 ммоль пиридона **2а-с,е,f** в 5 мл свежеперегнанного POCl₃ при 125–130 °С (масляная баня) медленно добавляют 15 ммоль ДМФА и нагревают в течение 8 ч. Охлаждают и постепенно выливают на 200 г мелкоизмельченного льда. Осадок промывают на фильтре водой и перекристаллизовывают из этанола. Получают бесцветные игольчатые кристаллы пиридинов **3а-с,е,f**.

6-Арил-2-(2-гидроксиэтиламино)-4-полифторалкил-3-цианопиридины (4а-с,е,f). Раствор 3.5 ммоль хлорпиридина **3а-с,е,f** и 4.2 ммоль соответствующего амина в 5 мл диоксана кипятят 3-6 ч и выливают в 100 мл воды. Осадок перекристаллизовывают из этанола.

5-Арил-2,3-дигидро-7-полифторалкил-8-цианоимидазо[1,2-*а***]пиридины (5а–с,f). Раствор 0.2 г гидроксиэтиламинопиридинов 4а–с,f** в 5 мл РОСІ₃ кипятят 1 ч. Реакционную смесь охлаждают до комнатной температуры и выливают на 50 г измельченного льда.

Полученный раствор подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из этанола. Получают темно-красные кристаллы имидазопиридинов **5a–c,f**.

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. Сулоева, М. Юре, Э. Гудриниеце, С. Беляков, М. Петрова, И. Калните, *XГС*, 358 (2001).
- 2. Е. Сулоева, М. Юре, Э. Гудриниеце, *XГС*, 1299 (1999).
- 3. Е. Сулоева, М. Юре, Э. Гудриниеце, *XГС*, 1011 (2000).
- 4. Э. Ю. Гудриниеце, А. В. Гутцайт, С. В. Беляков, А. Н. Фоменко, Изв. АН ЛатвССР. Сер. хим., 245 (1983).
- 5. Э. Ю. Гудриниеце, А. В. Гутцайт, С. В. Беляков, Изв. АН ЛатвССР. Сер. хим., 611 (1984).
- 6. А. В. Гутцайт, Дис. канд. хим. наук, Рига, 1987.
- А. Ф. Мишнев, С. В. Беляков, Я. Я. Блейделис, С. К. Апинитис, Кристаллография, 31, 297 (1986).
- 8. С. В. Беляков, А. В. Гутцайт, в кн. 1 Конф. молодых ученых хим. факультета РПИ. Тез. докл., Рига, 1985.
- 9. А. В. Гутцайт, С. В. Беляков, А. Ф. Мишнев, Я. Я. Блейделис, Э. Ю. Гудриниеце, *XГС*, 1233 (1987).

Рижский технический университет, Рига LV-1048, Латвия e-mail: mara@ktf.rtu.lv Поступило в редакцию 11.01.2001

^аЛатвийский институт органического синтеза, Рига LV-1006 e-mail: guttsait@osi.lv