С. В. Чапышев

РЕГИОСЕЛЕКТИВНОЕ ЦИКЛОПРИСОЕДИНЕНИЕ ДИМЕТИЛОВОГО ЭФИРА АЦЕТИЛЕНДИКАРБОНОВОЙ КИСЛОТЫ К 2,4,6-ТРИАЗИДОПИРИДИНАМ

2,4,6-Триазидо-3,5-дихлорпиридин получен в реакции пентахлорпиридина с азидом натрия. Данный триазид при комнатной температуре взаимодействует с норборненом региоселективно по γ-азидной группе, образуя соответствующий 4-(3-азатрицикло[3.2.1.0]октанил)-2,6-диазидопиридин с выходом 88%. Циклоприсоединение диметилового эфира ацетилендикарбоновой кислоты к этому триазиду протекает по азидным группам в положениях 2 и 6 пиридинового кольца, давая 4-азидо-2,6-ди(4',5'-диметоксикарбонил)-1H-1,2,3-триазолопиридин. Аналогичная реакция 2,4,6-триазидо-3,5-дицианопиридина с диметиловым эфиром ацтилендикарбоновой кислоты останавливается на стадии образования 2,4-диазидо-6-(4',5'-диметоксикарбонил)-1H-1,2,3-триазолопиридина. В отличие от реакций с богатыми электронами диполярофилами циклоприсоединение электронодефицитных диполярофилов к 2,4,6-триазидопиридинам подчиняется термодинамическому контролю и в первую очередь протекает по азидным группам, несущим наиболее высокую орбитальную плотность ВЗМО.

Ключевые слова: азидопиридины, триазолы, циклоприсоединение, региоселективность, молекулярные орбитали, термодинамический контроль.

Циклоприсоединение богатых электронами диполярофилов к 2,4,6триазидопиридинам протекает региоселективно по γ -азидогруппам вследствие более низкой энергии активации для этого пути реакции [1–6]. Энергия активации для таких реакций определяется распределением связывающей орбитальной плотности на азидных группах и оказывается тем ниже, чем меньше коэффициенты ВЗМО для атомов N_α и N_β данных групп [6]. Из этого следовало, что кинетически контролируемое циклоприсоединение электронодефицитных диполярофилов к 2,4,6-триазидопиридинам также должно протекать по γ -азидогруппам, имеющим более низкую связывающую орбитальную плотность. Однако в случае подчинения реакций термодинамическому контролю циклоприсоединение электронодефицитных диполярофилов к 2,4,6-триазидопиридинам следовало ожидать по α -азидным группам, несущим существенно более высокую орбитальную плотность ВЗМО [6].

С целью выяснения направления циклоприсоединения электронодефицитных диполярофилов к 2,4,6-триазидопиридинам в настоящей работе изучены реакции азидопиридинов 1 и 5 с диметиловым эфиром ацетилендикарбоновой кислоты (ДМАД). Реакцию триазида 1 с избытком ДМАД проводили в растворе эфира при комнатной температуре в темноте в течение шести недель. Выделение и очистка продуктов реакции позволили получить соединение 2 с выходом 34 %. Кроме того, из реакции было возвращено 52 % исходного триазида 1.

Состав и строение аддукта **2** полностью согласуются с данными элементного анализа, спектров ИК, ЯМР ¹Н и ¹³С и масс-спектрометрии. Наличие в спектре ЯМР ¹³С соединения **2** пяти сигналов атомов углерода пиридинового кольца при 93.1, 93.6, 151.2, 159.8 и 159.3 м. д. свидетельствует, что присоединение молекулы ДМАД к триазиду **1** протекает региоселективно по азидогруппе именно в положении 2 пиридинового кольца. Положение сигналов углеродных атомов триазольного цикла при 131.2 и 140.6 м. д., а также метоксикарбонильных групп при 53.4, 54.4, 157.2 и 160.1 м. д. в спектре ЯМР ¹³С аддукта **2** хорошо согласуется с аналогичными характеристиками 4,5-диметоксикарбонил-1H-1,2,3-триазолов [7, 8].

Образование циклоаддукта 2 показывает, что, в отличие от реакций с богатыми электронами диполярофилами, циклоприсоединение электронодефицитных диполярофилов к 2,4,6-триазидопиридинам подчиняется термодинамическому контролю и в первую очередь протекает по азидной группе, несущей более высокую орбитальную плотность ВЗМО. Невысокая реакционная способность соединения 1 по отношению к ДМАД и, как следствие, низкий выход продукта циклоприсоединения, очевидно, обусловлены низкой энергией ВЗМО исходного триазида. Еще ниже энергию ВЗМО имеет циклоаддукт 2 (таблица), который при комнатной температуре практически не реагирует с ДМАД.

Детальному изучению реакций 1,3-диполярного циклоприсоединения 2,4,6-триазидопиридинов к электронодефицитным диполярофилам способствовал разработанный нами синтез триазида 5, который имеет относительно слабые электроноакцепторные заместители в положениях 3 и 5 пиридинового кольца. Ранее сообщалось, что единственным продуктом реакции пентахлорпиридина 3 с азидом натрия в апротонных полярных растворителях (ДМФА, ДМСО) является моноазидопиридин 4, выход которого в зависимости от условий реакции варьировал от 22 до 62% [9– 12]. Хотя Паннэлл в своих патентах заявил также способ получения триазидопиридина 5, физические характеристики и методика синтеза данного соединения не были приведены [11, 12]. Наше исследование показало, что при проведении реакции соединения 3 с избытком азида натрия в растворе 10% водного ацетона при комнатной температуре выход азида 4 повышается до 98%. Эта же реакция, но при кипячении в течение 72 ч позволила получить целевой триазидопиридин 5 с выходом 84 %.

Соединение 5, по сравнению с изученными нами цианозамещенными 2,4,6-триазидопиридинами [5, 6], имеет более высокие энергии ВЗМО и НСМО (таблица). Это означает, что данный триазид должен быть более реакционноспособным по отношению к электронодефицитным и менее реакционноспособным по отношению к богатым электронами диполярофилам. Анализ распределения граничной орбитальной плотности в ВЗМО и НСМО пиридина 5 показывает (рис. 1), что присутствие атомов хлора в пиридиновом кольце 2,4,6-триазидопиридинов усиливает дифференциацию электронных свойств□ α- и γ-азидных групп данных соединений.

Рис. 1. Распределение орбитальной плотности в ВЗМО и НСМО соединения 5

Энергии граничных	с орбиталей	соединений	1, 2, 5-8	8, норборнена	и ДМАД
-------------------	-------------	------------	-----------	---------------	--------

Соединение	ВЗМО, эВ	НСМО, эВ	Соединение	ВЗМО, эВ	НСМО, эВ
1	-9.661	-1.707	7	-9.350	-1.615
2	-10.137	-2.157	8	-10.012	-2.098
5	-8.882	-1.176	Норборнен*	-8.97	1.70
6	-8.753	-0.802	ДМАД	-12.077	-0.941

* Вместо расчетных значений энергий ВЗМО и НСМО приведены экспериментально измеренные потенциал ионизации [13] и сродство к электрону [14].

С целью оценки реакционной способности соединения 5 по отношению к богатым электронами диполярофилам изучена его реакция с норборненом. Реакцию проводили в растворе диэтилового эфира при комнатной температуре в темноте в течение двух недель, используя четырехкратный избыток диполярофила. Как и в случае с 2,4,6-триазидо-3-хлор-5-цианопиридином [1, 2, 5], циклоприсоединение протекало региоселективно и стереоспецифично, давая менее стерически затрудненный экзо-циклоаддукт 6 с выходом 88 %. Вследствие электронодонорного характера азиридинового заместителя образующийся циклоаддукт имел на 8.6 ккал/моль более высокую энергию НСМО по сравнению с исходным триазидом (таблица), что, по-видимому, и заставляло реакцию останавливаться на стадии присоединения только одной молекулы норборнена к триазиду 5. Синтез соединения 6 показывает, что, несмотря на умеренную реакционную способность триазида 5 по отношению к богатым электронами диполярофилам, этот тип реакций с успехом может использоваться для мягкой и селективной модификации γ-азидной группы данного триазида.

Циклоприсоединение богатых электронами ацетиленов по у-азидогруппам 2.4,6-триазидоцианопиридинов является более предпочтительным процессом, чем аналогичные реакции по азидным группам 2,6-диазидо-4-1H-1,2,4-триазолопиридинов, несмотря на более низкие (на 5.5-6 ккал/моль) энергии НСМО последних [6]. Подобного рода эффекты для циклоприсоединения норборнена к 2,4,6-триазидопиридинам прежде не были выявлены [5]. Изученная здесь реакция триазида 5 с норборненом позволяет впервые проанализировать такой случай. Как уже упоминалось, циклоприсоединение норборнена к цианозамещенному производному триазида 5 при комнатной температуре останавливалось на стадии образования циклоаддукта 9. Между тем, по данным расчетов методом РМЗ, энергия НСМО данного циклоаддукта ниже на 1.4 ккал/моль, чем у триазида 5. Это свидетельствует о том, что, как и в случае с богатыми электронами ацетиленами, циклоприсоединение норборнена к 2,4,6-триазидопиридинам подчиняется кинетическому контролю и в первую очередь протекает по тем из азидных групп, которые имеют более низкую связывающую орбитальную плотность.

Реакцию соединения 5 с избытком ДМАД проводили в растворе диэтилового эфира при комнатной температуре в темноте в течение двух недель. Бисаддукт 8 был получен в качестве единственного продукта с выходом 75 %. Состав и строение соединения 8 полностью согласуются с данными элементного анализа, ИК, ЯМР ¹Н и ¹³С спектроскопии. Так, наличие в спектре ЯМР ¹³С соединения 8 только трех сигналов для атомов

углерода пиридинового кольца при 114.7, 142.9 и 149.8 м. д. свидетельствует, что триазольные заместители в молекуле данного соединения находятся в положениях 2 и 6 пиридинового кольца. Сигналы углеродных атомов триазольных заместителей в пиридиновом кольце бисаддукта 8 практически идентичны аналогичным характеристикам моноаддукта 2.

На рис. 2 представлена диаграмма относительного расположения уровней энергий ВЗМО азидопиридинов **1**, **2**, **5**, **7** и **8**, построенная на основе данных таблицы и позволяющая сравнить реакционную способность перечисленных соединений по отношению к электронодефицитным диполярофилам. Видно, что триазидопиридин **1** имеет на 17.96 ккал/моль более низкую энергию ВЗМО по сравнению с его дихлорзамещенным производным **5** и, следовательно, должен значительно уступать последнему в реакционной способности по отношению к ДМАД.

Рис. 2. Диаграмма энергетических уровней ВЗМО азидопиридинов 1, 2, 5, 7 и 8

Присоединение одной молекулы ДМАД к триазидам 1 и 5 понижает энергии ВЗМО обоих азидопиридинов почти на одну и ту же величину, равную примерно 11 ккал/моль. При этом образующийся моноаддукт 7 имеет на 7.16 ккал/моль более высокую энергию ВЗМО по сравнению с триазидом 1 и должен существенно превосходить последний в реакционной способности по отношению к ДМАД. Очевидно, именно этот фактор обусловливает быстрое превращение моноаддукта 7 в бисаддукт 8. Присоединение молекулы ДМАД по α-азидной группе моноаддукта 7 подчиняется термодинамическому контролю и осуществляется вследствие более высокой орбитальной плотности ВЗМО именно на этой группе соединения 7 (рис. 3). Интересно отметить, что еще большая орбитальная плотность ВЗМО сосредоточена на α-азидной группе моноаддукта 2 (рис. 3), которая, тем не менее, не взаимодействует с ДМАД вследствие низкой энергии ВЗМО данного азида. Примерно такую же энергию ВЗМО имеет и бисаддукт 8, который также не вступает в реакцию с ДМАД при комнатной температуре.

ВЗМО 2 ВЗМО 7 Рис. 3. Распределение орбитальной плотности в ВЗМО соединений 2 и 7

Проведенное исследование показало, что, в отличие от реакций с богатыми электронами диполярофилами, циклоприсоединение электронодефицитных диполярофилов к 2,4,6-триазидопиридинам подчиняется термодинамическому контролю и селективно протекает по α-азидным группам, имеющим более высокую орбитальную плотность ВЗМО.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре Specord M-80, спектры ЯМР ¹Н – Bruker AMX-400 (400 МГц) с использованием TMC в качестве внутреннего стандарта. Спектры ЯМР ¹³С регистрировали на приборе Bruker AM-400 (100.6 МГц), масс-спектры – Finnigan MAT-90 при энергии ионизации 70 эВ. Контроль за реакциями осуществляли методом TCX на пластинах Silufol UV-254. Расчет геометрии и электронных свойств соединений 2 и 5–8 проводился с помощью полуэмпирического метода PM3 [15], входящего в пакет программ Spartan [16]. Молекулярные структуры соединений рассчитывали с полной оптимизацией геометрических параметров.

Метод получения триазида 1 описан в [3]. В работе использовался пентахлорпиридин 3 фирмы Aldrich.

2,4-Диазидо-6-(4',5'-диметоксикарбонил)-1H-1,2,3-триазоло-3,5-дицианопиридин (2). К перемешиваемому раствору 0.252 г (1 ммоль) соединения **1** в 100 мл сухого диэтилового эфира по каплям добавляют 0.568 г (4 ммоль) диметилового эфира ацетилендикарбоновой кислоты и реакционную смесь оставляют в темноте при комнатной температуре в течение двух недель. Растворитель отгоняют под вакуумом, остаток промывают пентаном и хроматографируют на колонке с силикагелем, элюент бензол–этилацетат, 4 : 1. Продукт перекристаллизовывают из смеси гексан–бензол. После высушивания получают 0.134 г (34 %) соединения **2**. Т. пл. 95–96 °С. ИК спектр (вазелин), см⁻¹: 2225, 2200 (С=N), 2160, 2140 (N₃), 1734 (СООСН₃), 1586, 1546 (С=N, C=C). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 3.96 (3H, с, OCH₃); 4.01 (3H, с, OCH₃). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 53.4 и 54.4 (OCH₃); 93.1 (C₍₅₎); 93.6 (C₍₃₎); 109.1 и 111.0 (С=N), 131.2 (C₍₅₎); 140.6 (C₍₄₁)); 151.2 (C₍₄₎); 157.2 (С=O); 159.3 (C₍₆₎); 159.8 (C₍₂₎); 160.1 (С=O). Масс-спектр, *m/z* (*I*_{отн}, %): 394 (М⁺, 25). Найдено, %: С 39.71; H 1.77; N 42.51. C₁₃H₆N₁₂O₄. Вычислено, %: С 39.59; H 1.52; N 42.64. Кроме того, из реакции возвращают 0.131 г (52 %) исходного соединения **1**.

2,4,6-Триазидо-3,5-дихлорпиридин (5). К перемешиваемому раствору 2.51 г (1 моль) соединения **3** в 300 мл 10 % водного ацетона добавляют 2.6 г (4 моль) азида натрия. Реакционную смесь кипятят при 70 °С 72 ч. Ацетон отгоняют под вакуумом, к остатку добавляют 200 мл воды. Закристаллизовавшийся продукт отфильтровывают, сушат на воздухе, затем перекристаллизовывают из смеси гексан–бензол. После высушивания получают 2.28 г (84 %) соединения **5**. Т. пл. 78–79 °С. ИК спектр (КВг), см⁻¹: 2148, 2131, 2099 (N₃), 1576, 1559, 1555, 1544, 1541 (C=N, C=C), 1427, 1413, 1387, 1258, 1169, 1111, 936, 832, 778. Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 109.1 (C_(3,5)); 144.6 (C₍₄₎); 148.7 (C_(2,6)). Масс-спектр, *m/z* ($I_{0тн}$, %): 270 (M⁺, 43). Найдено, %: С 22.26; N 51.57. C₅Cl₂N₁₀. Вычислено, %: С 22.16; N 51.68.

4-(3,3-Азатрицикло[3.2.1.0]октил)-2,6-диазидо-3,5-дихлорпиридин (6). К перемешиваемому раствору 0.271 г (1 ммоль) соединения **5** в 100 мл сухого диэтилового эфира по каплям добавляют раствор 0.376 г (4 ммоль) норборнена в 30 мл сухого диэтилового эфира. Реакционную смесь оставляют в темноте при комнатной температуре в течение шести недель. Растворитель отгоняют под вакуумом, остаток промывают пентаном и перекристаллизовывают из смеси гексан-бензол. После высушивания получают 0.297 г (88 %) соединения **6**. Т. пл. 144–145 °C. ИК спектр (KBr), см⁻¹: 2970, 2935, 2884 (CH), 2148 (N₃), 1612, 1572 (C=N, C=C). Спектр ЯМР ¹Н (CDCl₃), δ , м. д., *J* (Гп): 0.81 (1H, д, *J* = 10.2, 8-H_{син}); 1.21 (2H, д. *J* = 7.5, 6- и 7-H_{акс}); 1.35 (1H, д. *J* = 10.2, 8-H_{анти}); 1.48 (2H, д. *J* = 7.5, 6- и 7-H_{акс}); 2.71 (2H, с, NCH). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 26.5 (CH₂—CH₂); 29.1 (CH—CH₂); 37.3 (CH); 45.0 (NCH); 107.8 (C_(3,5)); 148.5 (C_(2,6)); 155.2 (C₄). Масс-спектр. *m/z* (*I*_{отн}, %): 336 (M⁺, 55). Найдено, %: C 42.86; H 3.12; N 33.11. C₁₂H₁₀Cl₂N₈. Вычислено, %: C 42.75; H 2.99; N 33.24.

4-Азидо-2,6-ди(4',5'-диметоксикарбонил)-1H-1,2,3-триазоло-3,5-дихлорпиридин (8). К перемешиваемому раствору 0.271 г (1 ммоль) соединения **5** в 100 мл сухого диэтилового эфира по каплям добавляют 0.568 г (4 ммоль) диметилового эфира ацетилендикарбоновой кислоты. Реакционную смесь оставляют в темноте при комнатной температуре в течение двух недель. Растворитель отгоняют под вакуумом, остаток промывают пентаном и перекристаллизовывают из смеси гексан-бензол. После высушивания получают 0.416 г (75 %) соединения **8**. Т. пл. 139–140 °C. ИК спектр (KBr), см⁻¹: 2956 (CH), 2144 (N₃), 1736 (COOCH₃), 1560 (C=N, C=C). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 3.83 (3H, с, OCH₃); 3.95 (3H, с, OCH₃). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 53.6 и 54.5 (OCH₃); 114.7 (C_(3,5)); 131.7 (C₍₅₇)); 140.2 (C₍₄₇)); 142.9 (C₍₄₎); 157.4 (C=O); 149.8 (C_(2,6)); 160.1 (C=O). Найдено, %: С 36.89; H 2.32; N 25.07. C₁₇H₁₂Cl₂N₁₀O₈. Вычислено, %: С 36.77; H 2.18; N 25.23.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. V. Chapyshev, T. Ibata, *Heterocycles*, 36, 2185 (1993).
- 2. С. В. Чапышев, ХГС, 1578 (1993).
- 3. С. В. Чапышев, У. Бергштрассер, М. Региц, ХГС, 67 (1996).
- 4. С. В. Чапышев, В. М. Анисимов, ХГС, 676 (1997).
- 5. С. В. Чапышев, В. М. Анисимов, ХГС, 1521 (1997).
- 6. С. В. Чапышев, *ХГС*, 1497 (2000).
- 7. T. Sasaki, S. Eguchi, M. Yamaguchi, T. Esaki, J. Org. Chem., 46, 1800 (1981).
- 8. О. А. Радченко, Е. В. Прошакова, А. Н. Котлинская, А. Я. Ильченко, *ЖОрХ*, **27**, 1463 (1991).
- 9. I. R. A. Bernard, G. E. Chivers, R. J. W. Cremlyn, K. G. Mootoosamy, Aust. J. Chem., 27, 171 (1974).
- 10. R. A. Abramovitch, S. R. Challand, Y. Yamada, J. Org. Chem., 40, 1541 (1975).
- 11. C. E. Pannell, US Pat. 3773774 (1973); Chem. Abstr., 80, 59869 (1974).
- 12. C. E. Pannell, US Pat. 3883542 (1975); Chem. Abstr., 83, 58670 (1975).
- 13. P. Bischof, Helv. Chim. Acta, 53, 1677 (1970).
- 14. H. Morrison, T. Singh, L. de Cardenas, S. Severance, J. Am. Chem. Soc., 108, 3862 (1986).
- 15. J. J. P. Srewart, J. Comput. Chem., 10, 209 (1989).
- SPARTAN Version 4.0. Wavefunction, Inc., 18401 Von Karman Ave., # 370 Irvine, Chem. Abstr., 92715 USA, 1995.

Институт проблем химической физики РАН, Черноголовка 142432, Московской обл. e-mail: chap@icp.ac.ru Поступило в редакцию 15.11.99