С. Г. Кривоколыско, В. Д. Дяченко, В. Н. Нестеров^а, В. П. Литвинов⁶

СИНТЕЗ И АЛКИЛИРОВАНИЕ 4,5-*транс*-6-ГИДРОКСИ-4-(2-ИОДФЕНИЛ)-6-МЕТИЛ-5-(2-МЕТИЛФЕНИЛ)КАРБАМОИЛ-3-ЦИАНО-1,4,5,6-ТЕТРАГИДРОПИРИДИН-2-ТИОЛАТА ПИПЕРИДИНИЯ. МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 3-(2-ИОДФЕНИЛ)-2-(4-ФЕНИЛТИАЗОЛ-2-ИЛ)АКРИЛОНИТРИЛА

Взаимодействием *о*-иодбензальдегида, цианотиоацетамида и N-ацетоацетил-*о*-толуидина в присутствии пиперидина получен 4,5-*транс*-6-гидрокси-4-(2-иодфенил)-6-метил-5-(2-метилфенил)карбамоил-3-циано-1,4,5,6-тетрагидропиридин-2-тиолат пиперидиния, использованный в синтезе замещенных 4,5-*транс*-2-алкилтиотетрагидропиридинов и 2-(тиазол-2-ил)акрилонитрилов. Строение 3-(2-иодфенил)-2-(4-фенилтиазол-2-ил)акрилонитрила изучено с помощью РСА.

Ключевые слова: N-ацетоацетил-*о*-толуидин, *о*-иодбензальдегид, 3-(2-иодфенил)-2-(4-фенилтиазол-2-ил)ацилонитрил, цианотиоацетамид, конденсация, рентгеноструктурное исследование.

Замещенные серосодержащие тетрагидропиридины остаются до настоящего времени малоизученной группой органических соединений [1]. Учитывая данные о биологической активности таких гетероциклов [2], вызывают интерес исследования, связанные с разработкой удобных стереоселективных способов их получения.

Взаимодействием *о*-иодбензальдегида (1), цианотиоацетамида (2) и N-ацетоацетил-*о*-толуидина (3) в присутствии пиперидина нами впервые получен замещенный тетрагидропиридин-2-тиолат пиперидиния 4. Указанное соединение является устойчивым в кристаллическом состоянии, но, в отличие от его тиенилзамещенного аналога [3], при растворении легко трансформируется в продукт дегидратации 5, что делает невозможным анализ строения тиолата 4 с помощью спектроскопии ЯМР ¹Н. О стереоселективности приведенного метода синтеза можно судить по про-изводным 6, полученным при взаимодействии тиолата 4 с галогенидами 7 в этаноле.

В спектрах ЯМР ¹Н соединений **6** присутствуют сигналы протонов всех указанных для них на схеме заместителей и группы NH (см. экспериментальную часть). Сигналы протонов 4-Н и 5-Н проявляются в виде дублетов в области 4.50–4.56 и 2.84–2.90 м. д. соответственно с КССВ ³J = 11.8–12.3 Гц. Согласно уравнению Карплуса–Конроя [4], при таких значениях КССВ расчетный торсионный угол $\varphi C_{(4)}$ Н–C₍₅₎Н равен 160–165°, что свидетельствует о *транс*-экваториальном положении групп Ar и ArNHCO. Мы предполагаем, что группа OH занимает аксиальное положение, что отмечалось для изоструктурных аналогов соединений **4**, **6** [5].

6, **7 a** Hal = I, X = H; **b** Hal = Cl, X = $4\text{-BrC}_6\text{H}_4\text{NHCO}$

При алкилировании соли 4 бромидами 8 в этаноле при 20 °С происходит рециклизация тетрагидропиридинового кольца, которая ведет через интермедиаты 9 и 10 к замещенным тиазолам 11. Последние были также получены независимо из соединений 12 и 8 в ДМФА по известной методике [6].

8, 11 a Ar = Ph, b Ar = 4-BuC₆H₄, c Ar = 4-BrC₆H₄, d Ar = 4-MeC₆H₄

Для выяснения направления описанной выше рециклизации и одно-930 значного установления строения ее продуктов проведено рентгеноструктурное исследование соединения **11а**, представляющего собой *Е*-изомер относительно связи $C_{(12)}=C_{(15)}$ (на рисунке показан общий вид молекулы, длины связей и валентные углы приведены в табл. 1).

Общий вид молекулы 11а

Таблица 1

Длины связей (d) в молекуле 11a

Связь	d, Å	Связь	d, Å
$I_{(18)}-C_{(17)}$	2.096(5)	$C_{(8)} - C_{(9)}$	1.382(8)
$S_{(1)} - C_{(5)}$	1.701(5)	$C_{(9)} - C_{(10)}$	1.356(9)
$S_{(1)} - C_{(2)}$	1.729(4)	$C_{(10)} - C_{(11)}$	1.392(8)
$N_{(3)} - C_{(2)}$	1.289(6)	$C_{(12)} - C_{(15)}$	1.342(6)
$N_{(3)}-C_{(4)}$	1.378(5)	$C_{(12)} - C_{(13)}$	1.440(6)
$N_{(14)} - C_{(13)}$	1.137(6)	$C_{(15)} - C_{(16)}$	1.459(6)
$C_{(2)} - C_{(12)}$	1.479(6)	$C_{(16)} - C_{(17)}$	1.389(7)
$C_{(4)} - C_{(5)}$	1.365(7)	$C_{(16)} - C_{(22)}$	1.393(7)
$C_{(4)} - C_{(6)}$	1.463(6)	$C_{(17)} - C_{(19)}$	1.392(8)
$C_{(6)} - C_{(11)}$	1.388(6)	$C_{(19)} - C_{(20)}$	1.368(11)
$C_{(6)} - C_{(7)}$	1.398(7)	$C_{(20)} - C_{(21)}$	1.367(11)
$C_{(7)} - C_{(8)}$	1.385(8)	$C_{(21)} - C_{(22)}$	1.386(8)

В молекуле **11а** замещенный цикл триазола строго плоский (плоскость выполняется с точностью ± 0.002 Å). Двугранный угол между гетероциклом и фенильным заместителем (C₍₆₎...C₍₁₁₎) равен 163°, что указывает на незначительную скрученность вокруг связи C₍₄₎–C₍₆₎. Фрагмент молекулы C₍₂₎–C₍₁₂₎=C₍₁₅₎–C₍₁₆₎ (отклонение атомов от средней плоскости $\pm 0,014$ Å) лежит в плоскости гетероцикла (двугранный угол 2.5°), в то время как *о*-иодфенильный заместитель повернут относительно рассматриваемой цепочки атомов на 155.5°. Небольшое нарушение планарности молекулы, вероятно, можно объяснить внутримолекулярными невалентными контактами: S₍₁₎...H₍₁₅₎ 2.74(5) Å, C₍₁₃₎...C₍₂₂₎ 3.045(8) Å, C₍₁₃₎...H₍₂₂₎ 2.47(5) Å, I₍₁₈₎...H₍₁₅₎ 2.81(5) Å (при суммах ван-дер-ваальсовых радиусов 2.91, 3.54, 2.87, 3.13 Å соответственно [7]).

Таблица 2

Валентные углы (**w**) в молекуле 9а

Угол	ω, град.	Угол	ω, град.
$C_{(5)} - S_{(1)} - C_{(2)}$	88.6(2)	$C_{(6)} - C_{(11)} - C_{(10)}$	120.5(5)
$C_{(2)} - N_{(3)} - C_{(4)}$	111.2(4)	$C_{(15)}-C_{(12)}-C_{(13)}$	123.5(4)
$N_{(3)} - C_{(2)} - C_{(12)}$	123.1(4)	$C_{(15)}-C_{(12)}-C_{(2)}$	123.4(4)
$N_{(3)} - C_{(2)} - S_{(1)}$	115.1(3)	$C_{(13)} - C_{(12)} - C_{(2)}$	113.0(4)
$C_{(12)} - C_{(2)} - S_{(1)}$	121.8(3)	$N_{(14)}-C_{(13)}-C_{(12)}$	177.8(5)
$C_{(5)} - C_{(4)} - N_{(3)}$	113.8(4)	$C_{(12)}-C_{(15)}-C_{(16)}$	130.4(4)
$C_{(5)} - C_{(4)} - C_{(6)}$	126.4(4)	$C_{(17)}-C_{(16)}-C_{(22)}$	117.1(5)
$N_{(3)}-C_{(4)}-C_{(6)}$	119.8(4)	$C_{(17)}-C_{(16)}-C_{(15)}$	120.6(4)
$C_{(4)} - C_{(5)} - S_{(1)}$	111.2(3)	$C_{(22)}-C_{(16)}-C_{(15)}$	122.2(5)
$C_{(11)} - C_{(6)} - C_{(7)}$	118.2(5)	$C_{(16)} - C_{(17)} - C_{(19)}$	121.7(5)
$C_{(11)} - C_{(6)} - C_{(4)}$	121.7(4)	$C_{(16)}-C_{(17)}-I_{(18)}$	122.3(4)
$C_{(7)} - C_{(6)} - C_{(4)}$	120.0(4)	$C_{(19)}-C_{(17)}-I_{(18)}$	116.1(4)
$C_{(8)} - C_{(7)} - C_{(6)}$	120.7(5)	$C_{(20)}-C_{(19)}-C_{(17)}$	119.1(6)
$C_{(9)} - C_{(8)} - C_{(7)}$	119.6(5)	$C_{(21)}-C_{(20)}-C_{(19)}$	121.0(6)
$C_{(10)} - C_{(9)} - C_{(8)}$	120.6(6)	$C_{(20)} - C_{(21)} - C_{(22)}$	119.6(6)
$C_{(9)}-C_{(10)}-C_{(11)}$	120.4(5)	$C_{(21)}-C_{(22)}-C_{(16)}$	121.5(6)

Таблица З

Координаты (×10⁴) и изотропные эквивалентные (для Н изотропные) тепловые параметры неводородных атомов для молекулы 11а

Атом	x	у	Z	$U_{(eq)}$
I(18)	-5(1)	1725(1)	1317(1)	69(1)
S(1)	4367(2)	285(1)	2497(1)	46(1)
N(3)	3484(4)	-496(1)	414(4)	34(1)
N ₍₁₄₎	-324(6)	-353(2)	-3351(5)	53(1)
C ₍₂₎	3028(5)	-22(2)	577(5)	33(1)
$C_{(4)}^{(2)}$	4968(5)	-651(2)	1855(5)	36(1)
C ₍₅₎	5619(6)	-272(2)	3101(6)	44(1)
C ₍₆₎	5722(6)	-1175(2)	1917(6)	37(1)
C ₍₇₎	5263(7)	-1466(2)	389(6)	47(1)
C ₍₈₎	5999(8)	-1957(2)	420(8)	54(1)
C ₍₉₎	7176(8)	-2166(2)	1981(8)	59(1)
C(10)	7643(8)	-1889(2)	3476(8)	59(1)
C ₍₁₁₎	6922(7)	-1393(2)	3460(7)	51(1)
C ₍₁₂₎	1493(5)	249(2)	-780(5)	31(1)
C ₍₁₃₎	495(6)	-84(2)	-2233(5)	36(1)
C ₍₁₅₎	1053(6)	749(2)	-652(6)	37(1)
C ₍₁₆₎	-354(6)	1079(2)	-1881(6)	39(1)
C ₍₁₇₎	-969(7)	1518(2)	-1313(7)	46(1)
C ₍₁₉₎	-2287(9)	1844(2)	-2465(10)	66(2)
C ₍₂₀₎	-2970(9)	1733(3)	-4203(10)	72(2)
C ₍₂₁₎	-2377(9)	1310(3)	-4818(8)	68(2)
C ₍₂₂₎	-1076(8)	985(2)	-3663(7)	52(1)
H ₍₅₎	6573(88)	-264(25)	3947(85)	7(2)
H ₍₇₎	4475(74)	-1323(22)	-586(73)	5(2)
H ₍₈₎	5796(79)	-2121(24)	-551(82)	6(2)
H ₍₉₎	7712(72)	-2499(24)	2024(71)	5(1)
$H_{(10)}$	8334(86)	-2056(26)	4505(85)	7(2)
H ₍₁₁₎	7280(76)	-1204(23)	4458(76)	5(2)
H ₍₁₅₎	1695(63)	917(19)	282(64)	3(1)
H ₍₁₉₎	-2747(90)	2166(28)	-2043(87)	8(2)
H ₍₂₀₎	-3868(97)	1923(29)	-4757(92)	8(2)
H ₍₂₁₎	-2757(91)	1210(27)	-5898(92)	7(2)
H ₍₂₂₎	-589(71)	703(23)	-4086(68)	5(1)

В гетероцикле рассматриваемой молекулы сопряжение обусловливает 932

заметное перераспределение длин связей, которые совпадают с установленными значениями в тиазолах. Остальные длины связей и валентные углы имеют ожидаемые значения [8].

В кристалле наблюдается межмолекулярный контакт $C_{(5)}-H_{(5)}...N_{(14)}$ (1 + x, y, 1 + z) с параметрами: $C_{(5)}...N_{(14)}$ 3.448(7), $C_{(5)}-H_{(5)}$ 0.82(5), $H_{(5)}...N_{(14)}$ 2.64(5) Å, угол $C_{(5)}-H_{(5)}...N_{(14)}$ 174(3)°.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрофотометре ИКС-29 в вазелиновом масле, массспектры – на спектрометре Kratos MS-30 с прямым вводом образца в источник. Спектры ЯМР ¹Н записывали на приборах Bruker AM-300 (для соединений **4**, **6**) и Bruker WP-100 SY (для **11**) в ДМСО-d₆ (внутренний стандарт ТМС). Контроль за ходом реакции и индивидуальностью веществ осуществляли с помощью TCX на пластинках Silufol UV-254 (элюент ацетон–гексан, 3 : 5).

4,5-*транс***-6-**Гидрокси-**4-(2-иодфенил)-6-метил-5-(2-метилфенил)карбамоил-3-циа**но-**1,4,5,6-тетрагидропиридин-2-тиолат пиперидиния (4).** К смеси 4.64 г (20 ммоль) *о*-иодбензальдегида **1** и 3 капель пиперидина в 30 мл этанола (~20 °С) при перемешивании добавляют 2 г (20 ммоль) цианотиоацетамида **2**, через 5 мин 3.83 г (20 ммоль) N-ацетоацетил-*о*-толуидина **3** и далее 2.47 мл (25 ммоль) пиперидина. Через 30 мин образовавшийся осадок отфильтровывают, промывают ацетоном. Получают 11 г (93%) соли **4**. Т. пл. 171–173 °С. ИК спектр, v, см⁻¹: 3150–3330 (NH, OH), 2164 (CN), 1680 (CO). Вследствие быстрого протекания процессов дегидратации тиолата **4** в растворах ДМСО или CDCl₃ в спектре ЯМР ¹Н регистрируются сигналы протонов 1,4-дигидропиридин-2тиолата **5**: 1.55–1.68 (6H, м, 3CH₂); 1.78 (3H, с, 6-Ме); 2.06 (3H, с, 2'-Ме); 3.02 (4H, м, CH₂NCH₂); **4**,81 (1H, с, 4-H); 7.06 м, 7.42 м и 7.71 д (8H, H_{Ar}); 7.65 (1H, с, NH); 8.36 (1H, с, CONH) (сигналы протонов группы ⁺NH₂ не проявляются в результате дейтерообмена). Масс-спектр ЭУ (70 эВ), *m/z* (*I*_{отн}, %): 58 (21), 107 (100), 224 (30), 252 (99), 253 (36), 254 (30), 358 (90), 359 (34). Пик [М⁺] отсутствует. Найдено, %: С 53.24; Н 5.57; N 9.83; S 5.19. С₂₆Н₃₁IN₄O₂S. Вычислено, %: С 52.88; Н 5.29; N 9.49; S 5.43.

4,5-*транс*-6-Гидрокси-4-(2-иодфенил)-6-метил-2-Х-метилтио-5-(2-метилфенил)карбамоил-3-циано-1,4,5,6-тетрагидропиридины (6а,b). Смесь 1.77 г (3 ммоль) соли 4 и 3 ммоль соответствующего галогенида 7 в 30 мл 80% этанола перемешивают при 20 °С до растворения исходных реагентов и фильтруют через бумажный фильтр. Через 12 ч образовавшийся в фильтрате мелкокристаллический осадок отфильтровывают, промывают 80% этанолом и гексаном.

Соединение **ба**. Выход 1.17 г (75%). Т. пл. 196–198 °С. ИК спектр, v, см⁻¹: 3180–3390 (NH, OH), 2174 (CN), 1650 (CO). Спектр ЯМР ¹Н, δ, м. д., *J* (Гц): 1.60 (3H, с, 6-Ме); 1.90 (3H, с, 2'-Ме); 2.49 (3H, с, SMe); 2.84 (1H, д, ${}^{3}J = 11.8, 5-H$); 4.50 (1H, д, ${}^{3}J = 11.8, 4-H$); 6.10 (1H, с, OH); 7.10 м, 7.38 м и 7.81 д (8H_{Ar}); 7.71 (1H, с, NH); 9.25 (1H, с, CONH). Массспектр ЭУ (70 эВ), *m/z* ($I_{\text{отн}}$, %): 58 (49), 77(26), 107(100), 165(31), 266(40), 372(27). Пик [М⁺] отсутствует. Найдено, %: С 50.41; H 4.76; N 8.46; S 6.29. С₂₂H₂₂IN₃O₂S. Вычислено, %: С 50.87; H 4.27; I 24.43; N 8.09; S 6.17.

Соединение **6b**. Выход 1.66 г (77%). Т. пл. 232–233 °С. ИК спектр, v, см⁻¹: 3180–3330 (NH, OH), 2175 (CN), 1650 (CO). Спектр ЯМР ¹H, δ, м. д., *J* (Гц): 1.61 (3H, с, 6-Ме); 1.90 (3H, с, 2'-Ме); 2.90 (1H, д, ${}^{3}J = 12.3, 5$ -H); 3.91 (2H, с, SCH₂); 4.48 (1H, д, ${}^{3}J = 12.3, 4$ -H); 6.17 (1H, с, OH); 7.09 м, 7.37 д, 7.58 к, 7.81 д (12H_{Ar}); 8.29 (1H, с, NH); 9.27 (1H, с, 5-CONH); 10.48 (1H, с, 2-SCH₂CON<u>H</u>). Масс-спектр ЭУ (70 эВ), *m*/*z* (I_{0TH} , %): 58(78), 65(54), 77(75), 91(91), 107(76), 133(90), 171(85), 173(61), 197(99), 199(89), 220(58), 239(55), 266(82), 326(49), 393(44). Пик [M⁺] отсутствует. Найдено, %: C 48.91; H 3.22; N 8.13; S 4.75. C₂₉H₂₆BrIN₄O₃S. Вычислено, %: C 48.55; H 3.65; N 7.81; S 4.47.

2-(4-Арилтиазол-2-ил)-3-(2-иодфенил)акрилонитрилы (11а-d). А. Получают идентично сульфидам **6**, используя соответствующие бромиды **8а-d**.

Б. Тиазолы **11а-d** синтезируют по известной методике [6], используя 0.94 г (3 ммоль) соединения **12** и 3 ммоль бромида **8а-d**.

Соединение 11а. Выход 0.85 г (68%) (А), 0.88 г (71%) (Б). Т. пл. 112-114 °С. Спектр

933

ЯМР ¹Н, б, м. д.: 7.42 м, 8.02 м (9Н, H_{Ar}); 8.30 (1Н, с, H_{Het}); 8.36 (1Н, с, CH=). Найдено, %: С 52.45; Н 2.82; N 6.97; S 8.01. С₁₈Н₁₁IN₂S. Вычислено, %: С 52.19; Н 2.68; N 6.76; S 7.74.

Соединение **11b**. Выход 1.12 г (79%) (А), 1.20 г (85%) (Б). Т. пл. 77–78 °С. Спектр ЯМР ¹Н, б, м. д.: 0.89 (3H, т, Me); 1.29 м, 1.52 м и 2.60 т (6H, 3CH₂); 7.28 м, 7.60 т, 7.90 д и 8.03 д (8H_{Ar}); 8.23 (1H, с, H_{Het}); 8.29 (1H, с, CH=). Найдено, %: С 56.44; Н 4.35; N 5.63; S 7.03. С₂₂H₁₉IN₂S. Вычислено, %: С 56.18; Н 4.07; N 5.96; S 6.82.

Соединение **11с**. Выход 1.32 г (89%) (А), 1.30 г (88%) (Б). Т. пл. 155–157 °С. Спектр ЯМР ¹Н, б, м. д.: 7.27 м, 7.62 т и 8.01 т (8H_{Ar}); 8.28 (1H, с, H_{Het}); 8.39 (1H, с, CH=). Найдено, %: С 43.37; Н 2.31; N 5.82; S 6.81. С₁₈Н₁₀ВгIN₂S. Вычислено, %: С 43.84; Н 2.04; N 5.68; S 6.50.

Соединение **11d**. Выход 0.86 г (67%) (A), 1.05 г (82%) (Б). Т. пл. 95–97 °С. Спектр ЯМР ¹H, δ, м. д.: 2.33 (3H, c, Me); 7.27 м, 7.60 т, 7.94 д и 8.07 д (8H_{Ar}); 8.20 (2H, д, H_{Het} и CH=). Найдено, %: С 53.45; Н 3.17; N 6.81; S 7.62. С₁₉Н₁₃IN₂S. Вычислено, %: С 53.28; Н 3.06; N 6.54; S 7.49.

Рентгеноструктурное исследование 3-(2-иодфенил)-2-(4-фенилтиазол-2-ил)акрилонитрила (11а). Кристаллы моноклинные, при 20 °C: a = 8.141(3), b = 25.506(8), c = 8.419(3) Å, V = 1598.5(9) Å³, $d_{выч} = 1.721$ г/см³, Z = 4, пространственная группа $P2_1/n$. Параметры ячейки и интенсивности 3495 независимых отражений измерены на четырехкружном автоматическом дифрактометре Siemens P3/PC (λ Mo K_{α} , графитовый монохроматор, $\theta/2\theta$ -сканирование до $\theta_{max} = 27^{\circ}$). Структура расшифрована прямым методом, выявившим все неводородные атомы, и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Все атомы водорода объективно выявлены разностными Фурье-синтезами и уточнены изотропно. Окончательные значения факторов расходимости $R_1 = 0.052$ по 2980 независимым отражениям с $I > 2\sigma(I)$ и $wR_2 = 0.127$ по 3436 независимым отражениям. Все расчеты проведены по программе SHELXTL PLUS и SHELXL-93 (версия PC). Координаты и изотропные эквивалентные (для H изотропные) тепловые параметры атомов приведены в табл. 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Литвинов, Изв. АН. Сер. хим., 2123 (1998).
- 2. С. Г. Кривоколыско, Дис. канд. хим. наук, Москва, 1997.
- 3. С. Г. Кривоколыско, В. Д. Дяченко, В. П. Литвинов, ХГС, 1425 (1998).
- 4. Х. Гюнтер, Введение в курс спектроскопии ЯМР, Мир, Москва, 1984, 129.
- 5. С. Г. Кривоколыско, В. Д. Дяченко, А. Н. Чернега, В. П. Литвинов, ХГС, 790 (2001).
- 6. V. D. Dyachenko, S. G. Krivokolysko, V. P. Litvinov, Mendeleev Commun., 23 (1998).
- 7. R. S. Rowland, R. Taylor, J. Phys. Chem., 100, 7384 (1996).
- 8. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, S1 (1987).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 348011, Украина

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 Поступило в редакцию 18.05.99