Н. Н. Колос, В. А. Чебанов, В. Д. Орлов, Ю. Н. Суров

СИНТЕЗ И ИССЛЕДОВАНИЕ АРОМАТИЧЕСКИХ ПРОИЗВОДНЫХ 5,6-ДИГИДРОПТЕРИДИН-4-ОЛА

При взаимодействии 4-окси-5,6-диамино- и 2,5,6-триаминопиримидинов с замещенными α-бромацетофенонами образуются арилзамещенные 5,6-дигидроптеридин-4-олы. Обсуждена направленность этих реакций и изучены физико-химические характеристики синтезированных соединений.

Ключевые слова: диаминопиримидин, дигидроптеридин-4-ол, люминесценция, стабильность.

Диаминопиримидины являются ценными синтонами в тонком органическом синтезе, в частности в синтезе пуринов, высокая фармакологическая активность которых общеизвестна [1]. В настоящей работе изучены продукты циклизации 4-окси-5,6-диаминопиримидина (1) и 4-окси-2,5,6-триаминопиримидина (2) с замещенными α-бромацетофенонами 3a-g.

Целевые продукты 4a-е и 5a,b,d-g получены кипячением диамина 1 либо гидрохлорида триамина 2 с кетонами 3a-g в спиртовой среде в присутствии каталитических количеств ацетата калия. Соединения 4a-e, 5a,b,d-g представляют собой светло-желтые или оранжевые кристаллы, устойчивые при хранении на воздухе, обладающие люминесценцией в кристаллах и спиртовых растворах. В случае кетонов 3a,b,d из реакционных смесей были выделены также продукты ароматизации 6a,b,d (табл. 1). Выход птеридинов 6 повышается с увеличением времени кипячения реакционной смеси, а при реакции диамина 1 с кетоном 3f был получен исключительно птеридин 6f.

Использование гидрохлорида триамина 2 в синтезе соединений 5a,b,d-g связано с лучшей растворимостью этой соли: если образование птеридинов типа 4 (6) наблюдалось в течение 10-30 мин, то выделить продукты 5, причем с невысокими выходами, удается после 12-15 ч кипячения. При этом в реакционной смеси остаются исходные соединения (до 30%) и появляются примеси продуктов ароматизации 7. Резкое снижение реакционной способности триамина 2 связано, скорее всего, с его низкой растворимостью. Птеридины 7a,b,d получены также при взаимодействии соединения 2 с α,α -дибромацетофенонами 8a,b,d.

Строение продуктов **4–7** согласуется с результатами элементного анализа, данными ЯМР 1 Н, УФ и ИК спектрометрии (табл. 1), а в случае соединений **4e**, **5f**, **5g**, **6d** — также и с данными масс-спектров. В ИК спектрах дигидроптеридинов **4a–e** полоса $V_{C=N}$ малочувствительна к электронному влиянию заместителя R^{1} . Наблюдается существенный сдвиг

1, 4, 6 R = H; 2 R = NH₂. HCl; 5, 7 R = NH₂; 3a-g, 4a-e, 5a,b,d-g, 6a,b,d,f, 7, 8 a R¹ = H, b R¹ = Me-p, 8c R¹ = OMe-p, d R¹ = Br-p, e R¹ = NO₂-p, f R¹ = Ph-p, g R¹ = NO₂-m

этой полосы в низкочастотную область для производных **6а,b,d,f** (табл. 1). В области $3100-3660~{\rm cm}^{-1}$ имеются три интенсивные полосы поглощения. Высокочастотную и низкочастотную из них следует отнести к валентным колебаниям свободной и межмолекулярно-связанной гидроксильной группы соответственно, а полосу при $3300~{\rm cm}^{-1}$ – к валентным колебаниям вторичной аминогруппы. Это подтверждается ИК спектрами соединений **4а,d,e**, снятых для растворов в четыреххлористом углероде и хлороформе, в которых наблюдаются свободные полосы $v_{\rm oh}$ ($3521-3528~{\rm cm}^{-1}$) и $v_{\rm NH}$ ($3410-3412~{\rm cm}^{-1}$), а полосы связанных групп не проявляются. В ИК спектрах продуктов ароматизации **6а,b,d,f** указанные полосы отсутствуют, но имеется интенсивная полоса в области $1700~{\rm cm}^{-1}$, что связано с существованием лактим-лактамного равновесия в пиримидиновом ядре и согласуется с литературными сведениями [2].

Надежное отнесение соединений к дигидропроизводным типа **4**, **5** либо к их ароматическим аналогам **6**, **7** сделано на основании спектров ЯМР 1 Н. Так, в спектрах дигидроптеридинов **4а—е** имеется двухпротонный синглет метиленовой группы (в области 5.4–5.5 м. д.), уширенный синглет, также 820

Таблица 1

Характеристики соединений 4-7*

Соеди-	Брутто-	Найдено N, %	m 0.0	ИК спектр, см ⁻¹ (КВr)		УФ спектр	λ _{люм} , нм	Выход.
нение	формула	Вычислено N, %	Т. пл., ℃	ν _{C=N} (ν _{C=O})	VNH (OH)	$\lambda_{\rm max}$, нм ($\epsilon \times 10^{-3}$), этанол	(Стоксов сдвиг, см ⁻¹)	%
1	2	3	4	5	6	7	8	9
4 a	C ₁₂ H ₁₀ N ₄ O	24.8 24.76	227–229	1644	3296, 3163 (3462)	345 (13.8), 227 (16.6)	434 (5900)	85
4b	C ₁₃ H ₁₂ N ₄ O	23.4 23.32	235–237	1640	3300, 3160 (3475)	350 (13.5), 255 (11.7)	454 (6800)	63
4c	C ₁₃ H ₁₂ N ₄ O ₂	<u>21.9</u> 21.86	239–240	1644	3303, 3150 (3424)	357 (3.7), 266 (11.9)	478 (7100)	81
4d	C ₁₂ H ₉ BrN ₄ O	18.4 18.36	242–243	1644	3307, 3160 (3483)	354 (13.3), 253 (13.9)	430 (5000)	76
4e	C ₁₂ H ₉ N ₅ O ₃	25.8 25.82	290 (разл.)	1644	3305, 3110 (3424)	380, 252	435 (3400)	80
5a	C ₁₂ H ₁₁ N ₅ O	29.1 29.03	>300	1658	3316, 3146 (3370)	364 (18.7), 286 (8.3)	467 (6000)	50
5b	C ₁₃ H ₁₃ N ₅ O	<u>27.3</u> 27.43	>300	1660	3276, 3109 (3409)	364 (13.2), 289 (9.2)	458 (5600)	38
5d	C ₁₂ H ₁₀ BrN ₅ O	22.0 21.88	>300	1659	3356, 3163 (3496)	368 (11.3), 287 (5.5)	434 (4300)	40
5e	$C_{12}H_{10}N_6O_3$	29.2 29.36	>300	1658	3298, 3069 (3069)	-	_	75

1	. 2	3	4 .	5	. 6	7	8	9
5f	C ₁₈ H ₁₅ N ₅ O	<u>22.1</u> 22.07	>300	1648	3266, 3083 (3449)	379 (16.4), 289 (9.1)	457 (5100)	40
5g	$C_{12}H_{10}N_6O_3$	<u>29.3</u> 29.36	>300	1658	3293, 3192 (3436)	375 (11.2), 280 (6.9)	434 (3700)	36
6a	C ₁₂ H ₈ N ₄ O	<u>24.9</u> 24.89	>300 (разл.)	1602 (1702)		333 (18.5), 250 (23.5)	444 (6500)	29
6b	C ₁₃ H ₁₀ N ₄ O	<u>22.2</u> 22.12	>300 (разл.)	1604 (1712)		342 (19.7), 256 (24.1)	415 (5100)	20
6d	C ₁₂ H ₇ BrN ₄ O	<u>18.5</u> 18.48	>300 (разл.)	1637 (1708)		345 (3.4), 276 (20.2)	445 (6500)	20
6f	$C_{18}H_{12}N_4O$	<u>18.5</u> 18.48	>300 (разл.)	1608 (1710)		354 (7.6), 259 (11.6)	480 (7400)	26
7a	C ₁₂ H ₉ N ₅ O	<u>29.2</u> 29.27	>300	1688		370 (3.4), 299 (10.0)	456 (5100)	35
7b	C ₁₃ H ₁₁ N ₅ O	<u>27.7</u> 27.65	>300	1688		372 (3.2), 300 (9.5)	458 (5200)	32
7d	C ₁₂ H ₈ BrN ₅ O	<u>22.1</u> 22.01	>300	1688		370 (4.4), 303 (9.3)	458 (5200)	33

^{*} Масс-спектр соединения **4e**: М⁺ 271(3), 269(3), 121(2), 97(4);

⁵f: M⁺ 317(100), 179(21), 178(16), 158(6), 151(8), 138(47), 112(27), 92(7), 91(16);

⁵g: M⁺ 288(4), 287(11), 286(64), 256(6), 159(8), 138(40), 112(79), 102(11), 91(7), 80(9), 75(8);

⁶d: 304(86), M⁺ 302(81), 223(5), 185(9), 182(13), 151(23), 121(100), 102(10), 75(13).

равный по интенсивности двум протонам и отнесенный к группам ОН, NH (7.2–7.5 м. д.), синглет протона 2-H, смещенный в область слабого поля (7.9–8.3 м. д.), а также мультиплет ароматических протонов (7.6–8.6 м. д.). В спектрах продуктов **6a,b,d,f** проявляются мультиплетные сигналы ароматических протонов, уширенный сигнал гидроксильной группы (в области 12.7–12.9 м. д.), а также синглет пиразинового протона 6-H (9.4–9.5 м. д.). В спектрах птеринов **5a,b,d–g** и **7a,b,d** вместо синглета протона 2-H проявляется двухкратный синглет аминогруппы (6.5–7.0 м. д.) (табл. 2).

Таблица 2 Спектры ЯМР ¹Н соединений 4–7, δ, м. д., КССВ, *J* (Гц)

Соеди- нение	CH ₂ , c, 2H (6-H, c, 1H)	OH, NH, уш. с, 2H (OH, с, 1H)	2-H, c, 1H (NH ₂ , c, 2H)	H _{Ar}
4a	5.47	7.21	7.97	7.69–8.10, м, 5Н
4b	5.43	7.27	7.89	7.64 д и 8.06 д, $4\text{H}^3 J = 7.8$
4c	5.45	7.22	7.92	7.66 д и 8.03 д, 4H 3J = 8.0
4d	5.39	7.27	7.97	7.72 д и 8.06 д, 4H ³ J = 8.0, 4H
4e	5.55	7.47	8.30	8.42 д и 8.55 д, 4H $^3J = 8.0$
5a	5.28	6.20	(6.53)	7.45-7.98 м
5b	5.51	6.25	(6.53)	7.31 д и 7.94 д, 4H 3J = 7.8
5e· HCl	5.62	5.70	(6.55)	8.10 д и 8.45 д, $4H^3J = 8.0$
5f· HCl	5.54	3.30	(6.55)	7.40–8.12 м, 5Н
5g∙ HCl	5.57	3.25	(6.50)	7.80–8.42 м, 5Н
6a	(9.43)	(12.75)	8.37	7.65–8.32 м, 5Н
6b	(9.40)	(12.70)	8.41	7.65 д и 8.33 д, 4H 3J = 8.0
6d	(9.42)	(12.85)	8.44	7.70 д и 8.38 д, 4H 3J = 7.5
6 f	(9.47)	(12.75)	8.40	7.69–8.38 м, 5Н
7a	(9.20)	(11.35)	(6.86)	7.50–8.12 м, 5Н
7b	(9.22)	(11.40)	(6.86)	7.32 д и 8.05 д, 4H 3J = 8.0
7d	(9.29)	(11.30)	(6.99)	7.69 д и 8.04 д, 4H 3J = 7.5

Вопрос о направленности образования соединений **4a**—е и **5a**,с—g был решен экспериментальным путем. Так, при реакции диамина **1** и целевом окислении птеридина **4a** получен один и тот же продукт, идентичный соединению **6a**. Следовательно, более нуклеофильная группа 5-NH₂ вступает как в реакцию конденсации по альдегидной группе, так и фенацилирования с циклизацией в 1,2-дигидроптеридины. Этот вывод согласуется с данными о большей нуклеофильности аминогруппы в положении 5 пиримидинового цикла [3].

Отметим, что реакции α -бромацетофенонов с o-фенилендиамином и его замещенными проходят в более мягких условиях: непродолжительное кипячение исходных соединений в спирте в инертной атмосфере

позволяет получить дигидрохиноксалины с удовлетворительным выходом [4, 5]. Эти продукты чувствительны к кислороду воздуха и легко окисляются в 2-арилхиноксалины. Стабильность 1,2-дигидрохиноксалинов повышается при замещении по группе NH либо CH₂ [6]. В то же время дигидроптеридины 4а-е, 5а,b,d-g являются устойчивыми в сравнении с 1,2-дигидрохиноксалинами. Возможно, их стабилизация связана с существованием межмолекулярных ассоциатов, так как кипячение соединений 4а-е или 5а,b,d,g в ацетоне, ДМСО, ДМФА способствует окислению последних в птеридины 6 либо 7 соответственно. Стабилизирующим фактором является также наличие в молекулах 4а-е и 5а,b,d,g электроноакцепторного пиримидинового цикла.

В связи с тем, что для дигидроптеридинов 4 исключалась возможность существования внутримолекулярной водородной связи, для модельных соединений **A** и **B** были проведены квантово-химические расчеты *ab initio* (6-31G** [7]) (табл. 5). Они показали, что водородная связь О...НN не реализуется, так как межатомное расстояние О...Н больше, чем сумма соответствующих ван-дер-ваальсовых радиусов. В то же время укорочение межатомного расстояния N...НО для формы **B** достаточно для образования водородной связи. Увеличение дипольного момента для молекулы **B** на 1.38 D также свидетельствует в пользу такого предположения [8]. Однако невысокая разница в энергиях для **A** и **B** (4 ккал/моль в пользу формы **A**) делает существование водородной связи маловероятным.

Электронные спектры поглощения соединений 4а-е, 5а,b,d-g характеризуются наличием двух достаточно разрешенных полос поглощения в области 220-380 нм, отнесенных к π - π * типу. Длинноволновая полоса испытывает батохромное смещение при введении заместителя R¹ в параположение фенила, причем наибольший сдвиг наблюдается для нитропроизводного 4e ($\Delta \lambda = 35$ нм), что характерно для азометиновых хромофоров. Ароматизация закономерно сопровождается гипсохромным смещением λ_{max} длинноволнового поглощения (табл. 1). Добавление к измеряемому раствору 1-2 капель концентрированной серной кислоты в случае дигидропроизводных 5а, b, d, f, g приводит к незначительному гипсохромному сдвигу длинноволновой полосы и батохромному сдвигу коротковолновой, тогда как в их ароматических аналогах 7а, b, d обе полосы претерпевают гипсохромный сдвиг (табл. 3). Сравнение экспериментальных данных и результатов расчетов, проведенных методом CNDO/S [9] для соединений 5a и 7a, позволяет предположить, что протонирование проходит по первичной аминогруппе (табл. 4).

При добавлении к растворам дигидроптеринов **5а,b,d,f,g** нескольких капель основания (аммиак, раствор гидроксида натрия) электронные спектры не претерпевают каких-либо изменений. Однако увеличение основности среды оказывает заметное влияние на птерины **7а,b,d** — в коротковолновой области появляется новая интенсивная полоса поглощения, положение которой не зависит от концентрации основания (табл. 3). Этот факт, по-видимому, связан с образованием енолятных форм соединений **7а,b,d**.

Электронные спектры поглощения синтезированных соединений 5a,b,d,f,g и 7a,b,d

Соеди-	λ _{max} , μΜ					
нение	нейтральная среда	кислая среда	основная среда			
5a	364, 286	358, 295	364, 286			
5b	364, 289	357, 292	364, 289			
5d	368, 287	364, 296	368, 287			
5f	379, 289	370, 299	379, 289			
5g	375, 280	364, 287	375, 280			
7a	370, 299	350, 278	379, 299, 279			
7b	372, 300	358, 284	374, 300, 283			
7d	370, 303	354, 285	379, 303, 283			

Таблипа 4

Результаты расчетов методом CNDO/S

ОН
$$H_2$$
 H_2 H_2 H_2 H_2 H_2 H_2 H_3 H_2 H_3 H_4 H_2 H_4 H_5 H_5 H_5 H_5 H_6 H_8 H_8

Соеди-	$\lambda_{\max}\left(f ight)$					
нение	непротониро- ванная форма	форма А	форма В	форма С		
5a	365 (0.14) 232 (0.11)	355 (0.39) 257 (0.07)	371 (0.11) 242 (0.65)	376 (0.19) 236 (0.16)		
7a	388 (0.0001) 277 (0.0037)	361 (0.0002) 267 (0.0021)		297 (0.0032) 293 (0.571)		

Особенностью измеренных в метаноле спектров люминесценции соединений ${\bf 4a-e}$, ${\bf 5a,b,d-g}$, ${\bf 6a,b,d,f}$ и ${\bf 7a,b,d}$ является более высокая чувствительность к электронному влиянию заместителя ${\bf R}^1$, чем для спектров поглощения, что приводит к варьированию величин Стоксовых сдвигов (табл. 1). Большие значения Стоксовых сдвигов характерны для соединений, содержащих электронодонорные группы $({\bf 4b,c,d})$ либо более развитую π -систему $({\bf 6f})$. Неожиданным является наличие флуоресценции у нитропроизводного ${\bf 4e}$, что, вероятно, связано с благоприятным относительным расположением уровней n- π и π - π * в молекуле.

Результаты квантово-химических расчетов для модельных форм дигидроптеридинов A и B

Форма	Межатомные	Полная китаэне	Дипольный	
	молекулярная механика, Å	ab initio, 6-31G**, Å	(ab initio), ккал/моль	момент, D
A	O(1)H(3) 2.57 (2.45)* N(4)H(2) 3.82 (2.66)*	O(1)H(3) 2.64 N(4)H(2) 3.75	-331179	4.36
В	O(1)H(3) 2.59 N(4)H(2) 2.38	O(1)H(3) 3.17 N(4)H(2) 2.30	-331175	5.74

^{*} Сумма ван-дер-ваальсовых радиусов [10].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Specord 75-IR для таблеток КВг и растворов в хлороформе или четыреххлористом углероде; электронные спектры поглощения получены на приборе Specord M-40 для растворов в этаноле при концентрации веществ 1−5•10^{−5} моль/л; спектры ЯМР ¹H − на приборах Bruker AM-300, Bruker WM-250, Bruker AC-200 для растворов в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры измерены на масс-спектрометре Varian MAT-CH-6. Температура ионизационной камеры 100−300 °С. Ионизирующее напряжение 70 эВ, ток эмиссии 100 мкА. Контроль за чистотой полученных соединений проводили с помощью ТСХ на пластинках Silufol UV-254, растворители − хлороформ, ацетон, этилацетат.

7-(4-Метоксифенил)-5,6-дигидроптеридин-4-ол (4с). Смесь $0.38 \, \mathrm{r}$ (3 ммоль) диамина 1, $0.7 \, \mathrm{r}$ (3 ммоль) 4-метокси- α -бромацетофенона 3с, каталитических количеств ацетата калия в 30 мл метанола кипятят 10 мин. При охлаждении выпадают желтые кристаллы птеридина 4с, которые кристаллизуют из смеси метанол-ДМФА, 2:1.

Соединения **4a,b,d,e**, **5a,b,d–g**, **6a,b,d,f**, **7a,b,d** получают аналогично из диамина **1** и соответствующего кетона **3**; при синтезе продуктов **4d,e** время кипячения составляет **30** мин, продуктов **5a,b,d–g 12–15** ч.

2-Амино-7-фенилитеридин-4-ол (7а). Смесь $0.5 \, \mathrm{r}$ (23 ммоль) гидрохлорида триамина **2**, $0.64 \, \mathrm{r}$ (23 ммоль) α , α -дибромацетофенона в 30 мл метанола кипятят 20 ч. Полученный после охлаждения порошок продукта **7а** отфильтровывают, промывают горячей водой и кристаллизуют из смеси метанол–ДМФА, 2:1.

Соединения **7b,d** синтезируют по аналогичной методике из триамина **2** и соответствующего замещенного α,α -дибромацетофенона **8**.

7-Фенилптеридин-4-ол (6а). А. Смесь 0.1 мл (5 ммоль) фенилглиоксаля, 1.9 г (5 ммоль) диамина 1 в 30 мл метанола кипятят 30 мин. Выпавшие при охлаждении кристаллы продукта 6а кристаллизуют из этанола.

Б. К раствору 0.1 г (0.4 ммоль) дигидропиразина **4a** в 5 мл диоксана добавляют 0.04 г (0.4 ммоль) диоксида селена. Смесь кипятят 1 ч, отделяют выпавший селен, при охлаждении фильтрата выделяется продукт **6a**.

東京の東京を見る大人の本来をごとうとは、日本のでは、日本

СПИСОК ЛИТЕРАТУРЫ

- M. R. Del Guidice, A. Borioni, C. Mustazza, F. Gatta, S. Dionisott, C. Zocci, E. Ongini, Eur. J. Med. Chem., 31, 59 (1996).
- 2. Т. Джилкрист, Химия гетероциклических соединений, Мир, Москва, 1996, 304.
- 3. K. Senga, K. Shimizu, S. Nishigaki, Chem. Pharm. Bull., 25, 495 (1977).
- 4. J. Figueras, J. Org. Chem., 31, 803 (1966).
- Д. М. Александрова, Л. И. Косотова, Н. А. Лаптева, Б. Г. Дистанов, ЖОрХ, 14, 2433 (1978).
- 6. В. Д. Орлов, Н. Н. Колос, Б. Инсуасти, Вестн. Харьк. гос. ун-та, № 359, 63 (1991).
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 14, 1347 (1993).
- 8. Е. Н. Гурьянова, И. П. Гольдштейн, Т. И. Перепелкова, Успехи химии, 45, 1568 (1976).
- NDOL, Molecular orbitals by the SCF-NDO methods. Version 2.96. Universidad de La Habana.
- 10. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).

Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: desenko@univer.kharkov.ua e-mail: valentin@xray.isc.kharkov.com Поступило в редакцию 22.06.99