С. М. Десенко, Е. С. Гладков, С. А. Комыхов, О. В. Шишкин^а, В. Д. Орлов

ЧАСТИЧНО ГИДРИРОВАННЫЕ АРОМАТИЧЕСКИЕ ЗАМЕЩЕННЫЕ ТЕТРАЗОЛО[1,5-*a*]ПИРИМИДИНА

Реакцией 5-аминотетразола с ароматическими α,β -непредельными кетонами либо гидрохлоридами оснований Манниха синтезированы ароматические замещенные 4,7-дигидротетразоло[1,5-*a*]пиримидина. Их восстановление до соответствующих 4,5,6,7-тетрагидропроизводных осуществлено действием NaBH₄. Выявлена большая термодинамическая стабильность 4,7-дигидротетразоло[1,5-*a*]пиримидинов по сравнению с 4,5-дигидроизомерами. Взаимодействие 5-аминотетразола как с циклогексаноном, так и с 2-циклогексилиденциклогексаноном приводит к образованию 9,9-пентаметилен-4,5,6,7,8,9-гексагидротетразоло[5,1-*b*]хиназолина, строение которого доказано PCA.

Ключевые слова: 5-аминотетразол, дигидротетразоло[1,5-*a*]пиримидины, с,β-непредельные кетоны, тетрагидротетразоло[1,5-*a*]пиримидины, молекулярная структура, перегруппировка, циклоконденсация.

Удобным региоселективным методом синтеза азолопиримидиновых систем с узловым атомом азота является циклоконденсация аминоазолов с непредельными кетонами [1]. Однако в случае неэквивалентно замещенных тетразоло[1,5-*a*]пиримидинов решение вопроса о положении заместителей в пиримидиновом ядре требует учета не только направленности формирования пиримидинового цикла, но и возможности тетразолоазидных таутомерных переходов конечных соединений. Целью настоящей работы явился синтез частично гидрированных ароматических замещенных тетразоло[1,5-*a*]пиримидинов и исследование возможностей их взаимопревращений через открытую азидную форму.

Дигидропроизводные **3а–1** получены конденсацией 5-аминотетразола (1) с гидрохлоридами оснований Манниха **2а–с** либо α,β -непредельными кетонами **2d–1**. Реакцию проводили кипячением растворов эквимолярных количеств исходных веществ в изоамиловом спирте (соединения **3а–е**, 3 ч) или ДМФА (соединения **3f–1**, 20–30 мин). Действием NaBH₄ на суспензии соединений **3d–g,i,j,l** достигнуто их восстановление в соответствующие тетрагидропроизводные **4**. Соединения **3f,i,j,l** описаны нами ранее [2], характеристики впервые полученных веществ **3а–е,g,h,k** приведены в табл. 1.

Известно, что дигидропроизводные азолопиримидинов способны существовать в енаминной (А) и иминной (В) таутомерных формах [1]. ИК спектры соединений **3а–е,g,h,k** содержат интенсивные полосы валентных колебаний фрагмента –NH–C=C– в области 1650–1690 см⁻¹ (табл. 1),

2-4 a-c R = H; d R = Me; e,f,j-l R = Ph; g R = *n*-MeOC₆H₄; h R = *n*-ClC₆H₄; i R = *n*-BrC₆H₄; a,d,f-i R¹ = Ph; b,j R¹ = *n*-MeOC₆H₄; c,l R¹ = *n*-BrC₆H₄; e R¹ = Me; k R¹ = *n*-ClC₆H₄

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено N. %</u> Вычислено N, %	Т. пл., °С	^V С=С, см ⁻¹	Выход, %
3a	C ₁₀ H ₉ N ₅	<u>35.1</u> 35.2	236–238	1665	75
3b	$C_{11}H_{11}N_5O$	<u>30.8</u> 30.6	235–243	1665	55
3c	C ₁₀ H ₈ BrN ₅	<u>25.2</u> 25.2	246–248	1665	65
3d	$C_{11}H_{11}N_5$	<u>32.9</u> 32.8	183–185	1668	45
3e	$C_{11}H_{11}N_5$	<u>33.0</u> 32.8	164–166	1690	65
3g	C ₁₇ H ₁₅ N ₅ O	<u>23.0</u> 22.9	258	1650	46
3h	C ₁₆ H ₁₂ ClN ₅	<u>22.6</u> 22.6	244	1660	30
3k	$C_{16}H_{12}ClN_5$	<u>22.9</u> 22.6	270	1660	• 45
4d	$C_{11}H_{13}N_5$	<u>32.5</u> 32.5	198–201	-	65
4e	$C_{11}H_{13}N_5$	<u>32.7</u> 32.5	166–168	—	30
4f	C ₁₆ H ₁₅ N ₅	$\frac{25.4}{25.3}$	212–214	-	70
4g	C ₁₇ H ₁₇ N ₅ O	<u>22.8</u> 22.8	178–180	-	10
4 i	C16H13 BrN5	<u>19.8</u> 19.7	219–220	—	65
4j	C17H17N5O	<u>22.7</u> 22.8	210-213	—	65
41	$C_{16}H_{13}BrN_5$	<u>19.9</u> 19.7	221–223	-	75
7	$C_{13}H_{19}N_5$	<u>28.5</u> 28.5	224–226	1665	49* ²

Характеристики соединений 3а-е,g,h,j, 4d-f,g,i, 7*

* Соединения 3f,i,j,l описаны нами ранее [2].

中的人的人口,我们们就是这些人的人们,我们们就是这些人的人,这些人们就是这些人的,我们就是这些我们的人们的,我们就是这些人们的人们的人们也是这些人的。""你们是我们就是这些我们

^{*&}lt;sup>2</sup>По методу А.

типичной для производных 1,4-дигидропиримидина [3], что указывает на енаминное (А) строение этих веществ в твердой фазе. Спектры ЯМР ¹Н соединений **3** содержат сигналы протонов группы NH, ароматических ядер, заместителей и дигидропиримидинового цикла (табл. 2). При этом спектры дигидропроизводных **3с–1** характеризуют их как индивидуальные соединения в дигидроформе А. В случае же дигидротетразолопиримидинов **3а,b** наблюдается наложение спектров таутомеров А и В с соотношением интегральных интенсивностей сигналов ~95 : 5 для **3a** и 75 : 25 для **3b** (табл. 2). Относительная стабилизация дигидроформы В наблюдалась ранее для 2-дезазааналогов соединений **3а,b** – дигидропроизводных 1,2,4триазоло[1,5-*a*]пиримидина, содержащих такие же заместители R и R¹ [4].

Восстановление дигидропроизводных 3d-g,i,j,l приводит к исчезновению в ИК спектрах полосы v_{C=C} (табл. 1). Наличие в молекулах веществ 4d-g,i,j,l двух хиральных центров предполагает возможность образования их в виде смесей диастереомеров. Однако спектры ЯМР ¹Н этих соединений (в том числе и неочищенных образцов) характеризуют их как индивидуальные вещества; признаки дополнительного удвоения сигналов в них отсутствуют. Этот факт указывает на то, что при восстановлении дигидропроизводных 3 образуется только один из возможных пространственных изомеров. Величины КССВ J_{5НА-НА} и J_{7H-НА} (10.8–11.4 Гц) типичны для констант типа J_{aa} , что указывает на диэкваториальную ориентацию заместителей R и R¹ в преобладающих конформерах этих веществ и позволяет отнести их к *цис*-изомерному ряду. *цис*-Структура соединения 41 подтверждена с помощью ядерного эффекта Оверхаузера: дополнительное облучение на частоте резонанса протона 5-Н приводит к возрастанию интенсивности сигнала протона в положении 7 бицикла. Кроме того, наблюдающееся при этом увеличение интенсивности сигналов протонов иминогруппы и орто-протонов п-бромфенильного заместителя подтверждает сделанное нами на основании данных работы [5] отнесение сигналов протонов 5-Н и 7-Н.

Ранее мы показали [6], что взаимодействие 3-амино-1,2,4-триазола с 2-циклогексилиденциклогексаноном (5) и циклогексаноном (6) приводит к формированию изомерных триазолохиноксалиновых систем – 2-дезазааналогов соединений 7 и 8. В осуществленной в тех же условиях (кипячение в ДМФА, 1 ч) конденсации 5-аминотетразола с кетонами 5 и 6 наблюдается образование одного и того же соединения 7, строение которого доказано рентгеноструктурным анализом.

На наш взгляд, различие в строении дигидропиримидинового фрагмента конечных продуктов взаимодействия циклогексанона с 5-аминотетразолом и 3-амино-1,2,4-триазолом связано с выраженной способностью производных тетразола к перегруппировкам через открытую азидную форму. В изучаемой реакции эта перегруппировка связывает изомерные структуры 7 и 8. Возможность реализации такой перегруппировки была исследована на тетрагидропроизводных 4d,e,g,i,j,l, для которых следовало ожидать близких энергетических характеристик изомеров, отличающихся только положением заместителей R и R¹.

Таблица 2

Химические сдвиги протонов, б, м. д. (КССВ, Гц) соединений За-l, 4d-g,i,j,l, 7

Соединение		~ ~ ~		6-	6-H		Ароматические	
		5-H	/-H	H _A	H _B	уш. с)	протоны (м)	CH ₃ (3H, C)
39*								
54	A	_	5.2 (2Н, уш. с)	5.3 (1	Н, уш. с)	10.2	7.3-8.2	
	В		4.68 (2Н, т)	3.53 (2	2Н, т, 8.0)	10.0	6.98.2	
3b*			5.1	5.1 (3Н, уш. с, 6-Н, 7-Н)				3.79
	в	-	4.65 (2Н, т)	3.49 (2	2Н, т, 8.1)			3.88
3c		_	4.	ч 4.86 (3, уш. с, 6-Н, 7-Н)		10.0	7.2–7.9	
3d		_	5.51 (1Н, м)	5.20 (1	Н, д, 3.1)	10.2	7.4-7.7	1.63 (д, 6.1)
3e			6.36 (1Н, уш. с)	4.66 (1	Н, уш. с)	10.0	7.2–7.5	1.94
3f	. 1	-	6.65 (1Н, д)	5.32	(1Н, д)	10.6	7.2-7.9	
3g			6.54 (1Н, д)	5.26	5.26 (1Н, д)		6.9–7.8	3.75
3h		-	6.63 (1, д)	5.29 (1, д, 2.9)		10.6	7.3-8.0	
3i		. –	6.70 (1Н, д)	5.35	5.35 (1Н, д)		7.2-8.1	
3ј			6.58 (1Н, д)	5.21 (1	Н, д, 2.7)	10.5	6.9–7.7	3.35
3k		_	6.61 (1Н, д)	5.36 (1	Н, д, 2.7)	10.6	7.3-7.8	
31		-	6.60 (1Н, д)	5.39 (1	Н, д, 2.8)	10.8	7.3-8.4	

814

							1
4d	4.63 (1Н, м, <i>J</i> _{5H-НА} = 11.4)	4.55 (1Н, м)	1.79 (1Н, м)	2.32 (1Н, м)	7.8	7.2–7.5	1.54 (д, 6.0)
4e	3.68 (1Н, уш. с)	5.49 (11H, π . π , $J_{5H-HA} = 10.8;$ $J_{5H-HB} = 3.8)$	1.81 (1Н, м)	2.34 (1Н, м)	7.6	7.2–7.5	1.23 (д, 6.0)
4f	4.78 (1Н, д. д, $J_{\text{SH-HA}} = 11.4;$ $J_{\text{SH-HB}} = 1.7)$	5.66 (1H, д. д, $J_{5H-HA} = 11.0;$ $J_{5H-HB} = 4.2)$	2.20 (1Н, м, J _{НА-НВ} = -12.9)	2.43 (1Н, м)	8.0	7.2–7.7	_
4g	4.77 (1Н, д. д, $J_{5H-HA} = 11.0;$ $J_{5H-HB} = 1.7)$	5.60 (1H, π . π , $J_{\text{5H-HA}} = 11.2;$ $J_{\text{5H-HB}} = 4.5)$	2.21 (1Н, м, J _{HA-HB} = -13.3)	2.40 (1Н, м)	8.03	6.8–7.6	3.75
4i	4.77 (1H, д. д, $J_{\text{5H-HA}} = 10.8;$ $J_{\text{5H-HB}} = 1.2)$	5.68 (1H, π . π , $J_{5H-HA} = 11.1;$ $J_{5H-HB} = 4.3)$	2.20 (1Н, м, J _{НА-НВ} = -13.2)	2.44 (1Н, м)	8.06	7.2–7.7	-
4j	4.72 (1H, π . π $J_{5H-HA} = 11.3;$ $J_{5H-HB} = 1.9)$	5.64 (1H, π , π , $J_{5H-HA} = 11.0;$ $J_{5H-HB} = 4.4)$	2.18 (1Н, м, J _{HA-HB} = -13.2)	2.40 (1Н, м)	8.0	6.9–7.5	3.75
41	4.78 (1H, A , A , $J_{5H-HA} = 11.3;$ $J_{5H-HB} = 2.3)$	5.63 (1H, a , a , $J_{5H-HA} = 11.1;$ $J_{5H-HB} = 4.5)$	2.20 (1Н, м, J _{HA-HB} = -13.6)	2.45 (1Н, м)	8.03	7.2–7.7	_
7	_	_	-	-	9.6	1.2-2.2*2	-

.

* Смеси таутомерных форм A и B с содержанием B 5% (3а) и 25% (3b). $\underset{C_{1}}{\overset{\infty}{\sim}}$ *² (CH₂)_n.

Действительно, после выдерживания растворов соединений 4d,e,g,i,j,l в ДМСО-d₆ в течение 1 ч при 120 °С спектры ЯМР ¹Н полученных образцов указывали на образование в растворах смесей изомеров 4d+4e в соотношении 7:3, 4g+4j и 4i+4l – в соотношении ~1:1.

Спектры ЯМР ¹Н дигидропроизводных **3d,e,g,i,j,l** в этих условиях оставались неизменными, что связано с большей термодинамической стабильностью 4,7-дигидроструктур **3** по сравнению с их 4,5-дигидроизомерами. Обратный процесс (перегруппировка $8 \rightarrow 7$), на наш взгляд, реализуется при циклоконденсации 5-аминотетразола с циклогексаноном.

По данным РСА (рис., табл. 3), тетразольный цикл соединения 7 является плоским. Вследствие симметрии спирозаместителя при атоме С(8) относительно средней плоскости тетразолопиримидинового фрагмента для дигидропиримидинового кольца также можно было бы ожидать плоского строения. Однако отталкивание между атомами водорода метиленовых групп С₍₆₎, С₍₉₎, С₍₁₃₎ (укороченные внутримолекулярные контакты Н_(9A)...Н_(6A) 2.24 Å, H_(9A)...H_(6C) 2.06 Å, H_(13B)...H_(6D) 2.05 Å, H_(13B)...H_(6B) 2.23 Å, сумма ван-дер-ваальсовых радиусов 2.32 Å [7]) приводит к переходу дигидроцикла в конформацию сильно уплощенной софы. Атом С(8) отклоняется от плоскости остальных атомов цикла на -0.12 Á. Циклогексановое кольцо находится в конформации несколько асимметричного кресла. Отклонение атома С(8) от среднеквадратичной плоскости, проходящей через атомы С(9), С(10), С(12), С(13), несколько меньше, чем атома С(1): -0.58 и 0.76 Å соответственно. Циклогексеновый фрагмент разупорядочен по двум равновероятным конформациям несколько асимметричного полукресла. Отклонения атомов С(4) и С(5) от плоскости остальных атомов цикла составляют 0.24 и -0.39 Å, соответственно, в конформации А и -0.57 и 0.25 Å в конформации В.

Частично гидрированные ароматические замещенные тетразоло[1,5-а]пиримидина

Таблица З

Координаты (×10 ⁴) и эквивалентные изотропные тепло	вые
параметры ($Å^2 \times 10^3$) неводородных атомов в молекул	e 7

Атом	x	у	z	U _(eq)
No	4120(4)	-42(2)	8417(3)	60(1)
N(2)	3466(4)	-713(2)	9052(3)	60(1)
NG	2077(4)	-345(2)	9550(3)	50(1)
N(4)	3151(3)	818(2)	8488(2)	39(1)
N ₍₅₎	784(4)	1293(2)	9424(3)	51(1)
C	1941(4)	604(2)	9178(3)	36(1)
$C_{(2)}$	874(4)	2268(2)	8946(3)	34(1)
$C_{(3)}$	-467(4)	2962(2)	9339(3)	45(1)
$C_{(4A)}$	-199(11)	4063(5)	8984(6)	72(3)
$C_{(5A)}$	533(8)	4226(7)	7839(6)	61(3)
C _(4B)	-834(8)	3830(5)	8506(7)	46(2)
C _(5B)	893(7)	4283(5)	8342(7)	41(2)
C ₍₆₎	2086(5)	3589(3)	7751(3)	60(1)
C ₍₇₎	2056(4)	2523(2)	8242(3)	34(1)
C ₍₈₎	3361(4)	1771(2)	7822(3)	32(1)
C	5141(4)	2169(3)	7996(3)	42(1)
Cam	6451(4)	1556(3)	7394(3)	51(1)
C(II)	5997(4)	1430(3)	6162(3)	54(1)
C(12)	4319(4)	927(3)	5998(3)	52(1)
C ₍₁₃₎	2985(4)	1540(3)	6574(3)	42(1)

В кристалле молекулы образуют центросимметричные димеры за счет межмолекулярных водородных связей N₍₅₎–H...N₍₃₎, (-*x*, -*y*, 2-*z*): N...H 2.10 Å, N–H...N 157.5°.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений **3-ј**, **4-ј** и **7** снимали в таблетках КВг на приборе Specord 75 IR, спектры ЯМР ¹Н и ЯМР ¹³С (ДМСО-d₆) – на спектрометре Bruker AM 400, внутренний стандарт ТМС. Индивидуальность соединений контролировали методом TCX (Silufol UV-254, хлороформ, этилацетат). 5-Фенил-4,7-дигидротетразоло[1,5-*а*]пиримидин (За). Смесь 0.85 г (10 ммоль) 5-аминотетразола 1 и 2.13 г (10 ммоль) гидрохлорида β-диметиламинопропиофенона 2а в изоамиловом спирте (25 мл) кипятят 3 ч, охлаждают. Отфильтровывают 1.5 г (75%) соединения За с т. пл. 236–238 °С (из изоамилового спирта).

Аналогично получают соединения 3b-е.

5,7-Дифенил-4,7-дигидротетразоло[1,5-*а*]пиримидин (3f). Раствор 0.85 г (10 ммоль) 5-аминотетразола 1 и 2.07 г (10 ммоль) α,β-непредельного кетона 2f в 1 мл ДМФА кипятят 30 мин, затем охлаждают, сменивают с 30 мл бензола и отфильтровывают 2.2 г (80%) соединения 3f с т. пл. 232–233 °С (из смеси бензол–ДМФА, 3:1).

Аналогично получают соединения 3g-j.

5,7-Дифенилтетрагидротетразоло[1,5-*а*]пиримидин (4f). Суспендируют 2.75 г (10 ммоль) соединения 3f в 5 мл абс. метанола и порциями добавляют 1 г NaBH₄. По окончании реакции добавляют 200 мл воды. Отфильтровывают 1.94 г (71%) соединения 4f с т. пл. 212–214 °C (из метанола).

Аналогично получают соединения 4d,e,g,i.

9,9-Пентаметилен-4,5,6,7,8,9-гексаметилентетразоло[5,1-b]хиназолин (7). А. Раствор 0.85 г (10 ммоль) 5-аминотетразола 1 и 1.78 г (10 ммоль) 2-циклогексилиденциклогексанона **5** в 0.5 мл ДМФА кипятят 30 мин, смешивают с 30 мл бензола и отфильтровывают 1.21 г (49%) соединения 7 с т. пл. 224–226 °C (из изопропанола). Спектр ЯМР ¹³С (ДМСО-d₆), б, м. д.: 149.8 (3а-C), 128.2 (4а-C), 106.4 (8а-C), 62.8 (9-C), 33.8 (10-C), 26.0 (5-C), 24.1 (8-C), 23.0, 22.7 (6-C + 7-C), 21.6, 21.4 (11-C + 12-C). Масс-спектр, *m/z* (относительная интенсивность, %): 245 (М⁺, 15), 202 (100), 174 (15) 133 (10).

Б. Раствор 0.85 г (10 ммоль) 5-аминотетразола 1 и 1.96 г (20 ммоль) циклогексанона 6 в 0.5 мл ДМФА кипятят 45 мин, смешивают с 30 мл бензола и отфильтровывают 1.65 г (67%) соединения 7.

Рентгеноструктурное исследование. Кристаллы соединения 7 моноклинные, $C_{13}H_{19}N_5$, при 20°С a = 8.040(2), b = 13.092(3), c = 11.896(2) Å, $\beta = 91.88(3)^\circ$, V = 1251.5(4) Å³, $M_r = 245.33$, Z = 4, пространственная группа $P2_1/c$, $d_{выч} = 1.302$ г/см³, μ Mo $K_{\alpha} = 0.083$ мм⁻¹, F(000) = 528. Параметры элементарной ячейки и интенсивности 3419 отражений (3189 независимых $R_{int} = 0.09$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо K_{α} , графитовый монохроматор, 20/0-сканирование, $2\theta_{max} = 60^\circ$).

Структура расшифрована прямым методом с использованием комплекса программ SHELXTL PLUS [8]. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездника" с фиксированным $U_{uso} = 1.2 U_{eq}$ неводородного атома, связанного с данным атомом водорода. Разупорядоченный фрагмент уточнялся с наложением ограничений на длины связей С–С 1.54(1) Å. Уточнение по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов проведено до $wR_2 = 0.125 (R_1 = 0.082$ по 991 отражению с F>4 $\sigma(F), S = 1.28$). Координаты неводородных атомов приведены в табл. 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. М. Десенко, ХГС, 147 (1995).
- 2. В. Д. Орлов, С. М. Десенко, Н. С. Пивненко, ХГС, 1489 (1988).
- 3. A. L. Weis, H. C. van der Plas, Heterocycles, 24, 223 (1986).
- 4. В. Д. Орлов, С. М. Десенко, К. А. Потехин, Ю. Т. Стручков, XГС, 229 (1988).
- С. М. Десенко, О. В. Шишкин, В. Д. Орлов, В. В. Липсон, С. В. Линдеман, Ю. Т. Стручков, XTC, 981 (1994).
- 6. С. М. Десенко, В. Д. Орлов, Х. Эстрада, *ХГС*, 999 (1990).
- 7. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- G. M. Sheldrick, SHELXTL PLUS. PC Version. A system of computer programs for the determination of crystal structure from X-ray diffraction data. Rev. 5.02.1994.

Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: desenko@univer.kharkov.ua e-mail: gladkov@isc.kharkov.com Поступило в редакцию 27.09.99

[•]НТК "Институт монокристаллов", Харьков 61001, Украина