Э. Алкснис, Д. Корнеева, Э. Лукевиц

ПРОИЗВОДНЫЕ АДЕНИНА И УРАЦИЛА С ПРОТИВОТУБЕРКУЛЕЗНОЙ АКТИВНОСТЬЮ

Проведены синтез и исследование противотуберкулезной активности производных аденина и 5-фторурацила. Обнаружено, что для подавления возбудителя туберкулеза в молекуле активного вещества необходим сравнительно большой липофильный фрагмент.

Ключевые слова: пиримидины, пурины, алкилирование, туберкулез.

Туберкулез – одно из самых распространенных и опасных инфекционных заболеваний, а так называемая оппортуническая инфекция туберкулеза является основной причиной смерти больных с синдромом приобретенного иммунодефицита. В связи с тем, что возбудитель туберкулеза быстро приобретает устойчивость к средствам химиотерапии, необходим постоянный поиск новых активных препаратов [1, 2].

Первичный скрининг синтезированных нами производных аденина, урацила и ксантина в рамках программы Antimicrobial Acquisition&Coordinating Facility (США) выявил соединения (1, 2), отличающиеся некоторой антитуберкулезной активностью.

В дальнейшем мы синтезировали аналоги упомянутых соединений (4, 6, 8, 11–14).

3(9)-Замещенные производные 6-диэтиламинопурина **1**, **6** и 5-фторурацила **2**, **4** получены алкилированием 6-диэтиламинопурина (**5**) и 5-фторурацила (**3**) бензилхлоридами в условиях межфазного катализа; так же получено тризамещенное производное аденина **14**. Смеси 3- и 9-замещенных производных аденина **1**, **6** разделяли хроматографией на силикагеле; изомеры идентифицировали методами УФ и ЯМР ¹Н спектроскопии, как описано в работе [3].

3-Замещенные производные аденина **11–13** получены аралкилированием аденинов **9**, **10** бензилхлоридами в диметилформамиде с последующей перегрупировкой в щелочной среде. Производные пурина **8**, **15** получены из 6-хлор-9-(2,6-дихлорбензил)пурина (**7**) аналогично описанию в работах [3, 4].

Проверка противотуберкулезной активности синтезированных соединений (табл. 1) показала, что для эфективного подавления возбудителя туберкулеза в молекуле активного вещества необходим сравнительно большой липофильный фрагмент, отличающийся специфическими особенностями.

Противотуберкулезная активность производных пурина и пиримидина

Соединение	8	12	2	6	13	1	4	11	14	15
Ингибирование Mycobacterium tuberculosis H37Rv, %*	73	53	44	31	20	19	13	4	0	0

^{*} В концентрации 12.5 мкг/мл.

Наиболее активное из полученных соединений ($\mathbf{8}$) по активности примерно в 80 раз уступает стандарту, используемому в эксперименте (рифампину). Структура новых соединений доказана с помощью спектроскопии ЯМР \mathbf{H}^1 (табл. 2).

Таблица 2

Спектры ЯМР ¹Н производных пурина и пиримидина

Соеди-	Химический сдвиг, δ, м. д. (CDCl ₃)
1	1.20 (6H, т, CH ₃); 3.86 (4H, кв,CH ₂); 5.49 (2H, с, CH ₂); 7.11–7.42 (4H, м, Ph, пуриновый цикл); 8.27 (1H, с, пуриновый цикл)
2*	5.03 (2H, c, CH ₂); 7.43 (3H, м, Ph); 7.62 (1H, д, пиримидиновый цикл); 11.72 (1H, ш. c, NH)
4	4.76 (2H, c, CH ₂); 4.99 (2H, c, CH ₂); 6.93–7.54 (7H, м, Ph, пиримидиновый цикл)
6	1.50 (6H, м, 2CH ₃); 3.73 (2H, м, N^6 CH ₂); 4.40 (2H, м, N^6 CH ₂); 5.82 (2H, c, CH ₂); $7.16-7.53$ (4H, м, Ph, пуриновый цикл); 8.00 (1H, с, пуриновый цикл)
8	1.65 (6H, c, CH ₂); 4.17 (4H, c, N ⁶ CH ₂); 5.54 (2H, c, CH ₂); 7.15 – 7.44 (4H, м, Ph, пуриновый цикл); 8.32 (1H, c, пуриновый цикл)
12	4.79 (2H, ш.с, N ⁶ CH ₂); 5.83 (2H, с, CH ₂); 6.19 (2H, м, фурановый цикл); 7.05–7.45 (4H, м, Ph, фурановый цикл); 7.60 (с); 7.96 (с) (2H, пуриновый цикл)
13	4.80 (2H, ш.с, N^6 CH ₂); 5.62 (2H, c, CH ₂); 6.20 (2H, м, фурановый цикл); 7.04 – 7.46 (5H, м, Ph, фурановый цикл); 7.60 (c), 7.96 (c) (2H, пуриновый цикл)

^{*} В ДМСО-d₆.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре Bruker WH-90, внутренний стандарт ТМС. Точки плавления определены на приборе Boetius и не корригировались. Ультрафиолетовые спектры сняты на спектрофотометре UNICAM UV-vis. Анализ методом ТСХ проводили на пластинках Silufol UV-254 в системах А (хлороформ—этилацетат, 1:1) и Б (хлороформ—этилацетат—этанол, 2:2:1). Для колоночной хроматографии использован силикагель L 40/100 в тех же системах.

Синтез производных пурина 7 и 15 описан в работе [3], соединения 14 – в работе [4].

Определение противотуберкулезной активности полученных соединений проводили в культуре *Mycobacterium tuberculosis* H37Rv в среде BACTEC 12B с радиометрической системой BACTEC 460.

9-(2,6-Дихлорбензил)-6-диэтиламинопурин (1) и 3-(2,6-дихлорбензил)-6-диэтиламинопурин (6). Нагревают при перемешивании смесь 1.91 г (10 ммоль) 6-диэтиламинопурина 5, 20 мл бензола, 8 мл 50% водного раствора NаOH, 0.32 г (1 ммоль) тетрабутиламмонийбромида и 2.14 г (11 ммоль) 2,6-дихлорбензилхлорида при 80 °C до растворения суспензии натриевой соли пурина (30–45 мин). Смесь охлаждают, добавляют 100 мл воды и дважды экстрагируют 50 мл хлороформа. Хлороформные экстракты сушат над безводным сульфатом натрия, упаривают досуха и сухой остаток разделяют на колонке с силикагелем 30×2 см (система A). После хроматографирования кристаллизацией из гексана

получают 2.48 г (71%) соединения **1** и 0.63 г (18%) соединения **6**. Т. пл. 201–202 °С, λ_{max} 309 нм (метанол). Соединение **1**. Найдено, %: N 20.08; C 54.93; H 4.88. $C_{16}H_{17}Cl_2N_5$. Вычислено, %: N 20.00; C 54.86; H 4.86. Соединение **6**. Найдено, %: N 20.17; C 55.11; H 4.86. $C_{16}H_{17}Cl_2N_5$. Вычислено, %: N 20.00; C 54.86; H 4.86.

6-Пиперидино-9-(2,6-дихлорбензил)пурин (8). Нагревают 0.32 г (1 ммоль) 6-хлор-9-(2,6-дихлорбензил)пурина **7** и 2.55 г (30 ммоль) пиперидина 2 ч при 100 °C. Раствор выливают в 50 мл воды, через 2 ч фильтруют, промывают водой, кристаллизуют из этанола. Получают 0.15 г (41%) соединения **8**. Т. пл. 191–192 °C, λ_{max} 280 нм (метанол). Найдено, %: N 19.42; C 56.45; H 4.77. $C_{17}H_{17}Cl_2N_5$. Вычислено, %: N 19.32; C 56.37; H 4.74.

3-(2,6-дихлорбензил)-6-диметиламинопурин (11), 3-(2,6-дихлорбензил)-6-фурфуриламинопурин (12) и 3-(2-хлорбензил)-6-фурфуриламинопурин (13). (Общая методика). Суспензию, содержащую 10 ммоль аминопурина, 10 ммоль бензилхлорида и 10 мл диметилформамида нагревают 2 ч при 110 °C. Добавляют 10 мл воды, нейтрализуют концентрированным раствором аммиака. После этого добавляют 50 мл 1 н. раствора NаОН и дважды экстрагируют 50 мл горячего хлороформа. Хлороформные экстракты сушат над безводным сульфатом натрия, упаривают. Сухой остаток хроматографируют на колонке с силикагелем (30 × 4 см, система А, потом Б). После хроматографирования кристаллизуют из эфира. Получают 1.96 г (61%) соединения 11 (т. пл. 212–213 °C, λ_{max} 309 нм (метанол)), 1.83 г (49%) соединения 12 (т. пл. 171–173 °C, λ_{max} 294 нм (метанол)), 1.80 г (53%) соединения 13 (т. пл. 191–193°С, λ_{max} 294 нм (метанол)). Соединение 11. Найдено, %: N 21.58; C 54.20; H 4.11. $C_{14}H_{13}Cl_2N_5$. Вычислено, %: N 21.74; C 52.19; H 4.07. Соединение 12. Найдено, %: N 18.55; C 54.62; H 3.50. $C_{17}H_{13}Cl_2N_5$ О. Вычислено, %: N 18.71; C 54.56; H 3.51. Соединение 13. Найдено, %: N 20.45; C 60.28; H 4.19. $C_{17}H_{14}ClN_5$ О. Вычислено, %: N 20.61; C 60.28; H 4.15.

5-Фтор-1-(2,6-дихлорбензил)урацил (2). Суспензию, содержащую 1.3 г (10 ммоль) 5-фторурацила, 0.56 г (10 ммоль) порошкообразного КОН, 10 мл бензола и 0.4 г триоктилметиламмонийбромида нагревают при перемешивании 1 ч при 80 °C. Добавляют 1.95 г (10 ммоль) 2,6-дихлорбензилхлорида, нагревают и перемешивают еще 2 ч. Смесь охлаждают и промывают бензолом. Остаток дважды экстрагируют 50 мл горячего хлороформа. Хлороформные экстракты упаривают, остаток кристаллизуют из бутанола. Получают 0.6 г (21%) соединения **2**. Т. пл. 253–255 °C, λ_{max} 273 нм (метанол). Найдено, %: N 9.69; C 45.70; H 2.44. C₁₁H₇Cl₂FN₂O₂. Вычислено, %: N 9.61; C 45.63; H 2.46.

1,3-Ди(3,4-дихлорбензил)-5-фторурацил (4). Двухфазную систему, содержащую 1.3 г (10 ммоль) 5-фторурацила, 0.8 г (20 ммоль) гидроокиси натрия, 8 мл воды, 0.64 г (2 ммоль) тетрабутиламмонийбромида и 3.9 г (20 ммоль) 3,4-дихлорбензилхлорида, нагревают при 60 °С, перемешивая 1.5 ч. Добавляют 50 мл 1 н. раствора гидроокиси натрия и дважды экстрагируют 50 мл хлороформа. Хлороформные экстракты сушат над безводным сульфатом натрия, фильтруют, упаривают досуха. После кристаллизации из ацетонитрила получают 2.3 г (52%) соединения **4**. Т. пл. 142-144 °С, λ_{max} 273 нм (метанол). Найдено, %: N 6.36; C 48.00; H 2.52. $C_{18}H_{11}Cl_4FN_2O_2$. Вычислено, %: N 6.25; C 48.25; H 2.47.

СПИСОК ЛИТЕРАТУРЫ

- S. L. Dax, Antibacterial Chemotherapeutic Agents, Blackie Academic&Professional, London, 1997.
- Burger's Medicinal Chemistry and Drug Discovery, M. E. Wolf, ed., 5. ed., Wiley Intersci., 1996, 2, 575.
- 3. Н. Рамзаева, Ю. Гольдберг, Э. Алкснис, М. Лидак, М. Шиманская, *ЖОрХ*, **25**, 1783 (1989).
- 4. Н. Рамзаева, Ю. Гольдберг, Э. Алкснис, М. Лидак, М. Юре, Э. Гудриниеце, *ЖОрХ*, **25**, 1780 (1989).

Латвийский институт органического синтеза, Pura LV-1006 e-mail: pilsonis@osi.lv

Поступило в редакцию 11.10.98 После доработки 22.08.2000