А. Т. Солдатенков, Т. П. Христофорова, А. В. Темесген, Б. Н. Анисимов, Б. Б. Аверкиев^а, Л. Н. Кулешова^а, В. Н. Хрусталев^а, М. Ю. Антинин^а, Н. Н. Лобанов

ОКИСЛИТЕЛЬНЫЕ РЕАКЦИИ АЗИНОВ

7*. ИМИНИРОВАНИЕ 4-АРИЛ-1,2,3,6-ТЕТРАГИДРОПИРИДИНОВ АРИЛАМИНАМИ В ПРИСУТСТВИИ ПЕРМАНГАНАТА КАЛИЯ. МОЛЕКУЛЯРНОЕ СТРОЕНИЕ 1-МЕТИЛ-2-(4-НИТРОФЕНИЛИМИНО)-4-ФЕНИЛ-1,2,5,6-ТЕТРАГИДРОПИРИДИНА

При обработке перманганатом калия 4-арилзамещенных 1-метил-1,2,3,6-тетрагидропиридинов в присутствии ариламинов происходит не известная ранее межмолекулярная реакция окислительного иминирования, протекающая с образованием 2-(арилимино)-1,2,5,6-тетрагидропиридинов. Методом РСА изучена молекулярная структура 1-метил-2-(4-нитрофенилимино)-4-фенил-1,2,5,6-тетрагидропиридина и показано, что пиперидеиновый цикл молекулы имеет конформацию софы, а ее амидиновый фрагмент находится в *Е*-конфигурации.

Ключевые слова: окислительное иминирование 4-арил-1,2,3,6-тетрагидропиридинов.

Окисление 4-арилтетрагидропиридинов перманганатом калия в присутствии соединений, содержащих активированную метильную группу, происходит с образованием продуктов С-С сочетания, таких, как 2-ацилметилентетрагидропиридины [2, 3]. С целью выявления возможности расширения границ этого окислительного сочетания нового типа в настоящей работе изучалось совместное окисление 4-арилзамещенных 1,2,3,6-тетрагидропиридинов 1, 2 с различными ариламинами. Реакцию проводили в растворе ацетонитрила при комнатной температуре в присутствии перманганата калия. При окислении 4-фенилпиперидеина 1 в присутствии 4-нитроанилина из реакционной смеси после хроматографического разделения и перекристаллизации из гексана был получен желтый аморфный порошок с т. пл. 92-94 °C, который, по данным элементного анализа и спектральным характеристикам, соответствовал продукту С-N сочетания двух указанных субстратов – имину 3 (см. предварительное сообщение [4]). При длительном выдерживании маточного раствора, оставшегося после отделения аморфного осадка (выход 30%), образовалась вторая порция осадка (выход 3%) - хорошо сформировавшиеся моноклинные кристаллы

^{*} Сообщение 6 см. [1].

1, 3, 4, 6, 7 Ar = Ph; 2, 5 Ar = [2,2]-парациклофанил-4; 3, 5 R = NO₂; 6 R = Br; 7 R = N = NPh

ярко-желтого цвета, т. пл. (118–120 °C) которых значительно отличалась от таковой аморфного порошка. Тем не менее, спектры ЯМР 1 Н, ИК спектры и масс-спектры обеих указанных фракций оказались идентичными. Проведение аналогичного окисления при охлаждении (-10-0 °C) или при слабом нагревании (35–50 °C) приводит к снижению выхода целевого имина 3 до 20%, выделенного в виде аморфной фракции. Для однозначного доказательства строения синтезированного амидина 3 и установления его пространственной и молекулярной структуры было проведено его ренттеноструктурное исследование. В кристаллическом состоянии молекулы соединения 3 занимают две системы эквивалентных позиций l и l Общий вид одной из независимых молекул представлен на рис. l

Рис. 1. Общий вид молекулы соединения 3

Координаты атомов приведены в табл. 1 и 2, а длины связей и величины валентных углов – в табл. 3 и 4 (длины связей и значения валентных углов в независимых молекулах отличаются незначительно [5]). Тетрагидропиридиновый цикл молекул соединения $\bf 3$ в обеих системах имеет конформацию софы: атомы N1(N1'), C7(C7'), C8(C8'), C9(C9') и C10(C10') лежат в одной плоскости (среднеквадратичное отклонение атомов от плоскости составляет $\bf 0.028~\rm \mathring{A}$ в молекуле $\bf 1$ и $\bf 0.047~\rm \mathring{A}$ в молекуле $\bf 2$). Атом C11(C11') выходит из этой плоскости на $\bf 0.61~\rm \mathring{A}$ в молекуле $\bf 1$ и $\bf -0.59~\rm \mathring{A}$ в молекуле $\bf 2$. Атом N1(N1') имеет плоскотригональную конфигурацию:

сумма валентных углов 355° и 358° соответственно. Фенильное кольцо плоское и повернуто к средней плоскости гетероцикла на 30.4° в молекуле l и на 23° в молекуле 2. Нитрофенильные заместители в обеих независимых молекулах находятся в *анти*-положении относительно связи C=N амидинового фрагмента. Плоскость нитрофенильной группы составляет с плоскостью гетероцикла угол в 53.5° в молекуле l и 127.3° в молекуле l в обеих молекулах нитрогруппа слегка повернута по отношению к плоскости второго фенильного кольца (угол 5.4° в молекуле l и 4.3° в молекуле 2). Упаковка молекул в кристалле показана на рис. 2.

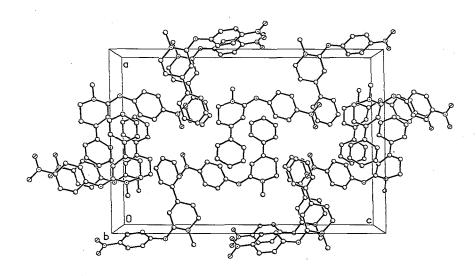


Рис. 2. Упаковка кристаллической структуры соединения 3 вдоль оси ОУ (атомы H не приведены)

В рассмотренном примере совместного окисления пиперидеина 1 с *п*-нитроанилином кроме *E*-геометрического полиморфного изомера 3 из реакционной смеси удалось выделить хроматографическим путем с выходом 2% 1-метил-2-оксо-4-фенилтетрагидропиридин (4), который был получен [1, 4] прямым окислением исходного 1. Образование этого циклического амида 4 в данном случае может быть связано как с прямым окислением исходного соединения 1, так и с возможностью гидролиза амидина 3 при обработке и хроматографическом разделении реакционной смеси (многие амидины малоустойчивы и могут легко гидролизоваться до амидов [6, 7]). Осуществлено также окислительное иминирование *n*-нитроанилином тетрагидропиридина 2, имеющего парациклофанильный заместитель при $C_{(4)}$. Ожидаемый амидин 5 был выделен в виде желтого аморфного порошка с выходом 30%. Еще два примера аналогичного С-N сочетания получены при совместном окислении тетрагидропиридина 1 с п-броманилином и с п-аминоазобензолом. Соответствующие амидины (6 и 7) выделены в виде светло-желтых и оранжевых кристаллов с выходом 17 и 20% соответственно.

Таблица 1

Координаты неводородных атомов ($\times 10^4$) и эквивалентные изотропные тепловые

параметры ($\mathring{\bf A}^2 \times 10^3$) в молекуле соединения 3						
Атом	x	у	Z	$U_{ m eq}$		
N(1)	2741(1)	9589(2)	556(1)	51(1)		
N(2)	2550(1)	10230(2)	-356(1)	51(1)		
N(3)	3488(1)	12758(2)	-2402(1)	63(1)		
O(1)	4188(1)	12558(3)	-2552(1)	97(1)		
O(2)	2982(1)	13511(2)	-2679(1)	91(1)		
C(1)	4917(1)	12559(2)	623(1)	44(1)		
C(2)	.5364(1)	12822(3)	146(1)	57(1)		
C(3)	6092(1)	13690(3)	167(1)	71(1)		
C(4)	6386(2)	14320(3)	660(1)	75(1)		
C(5)	5957(2)	14077(3)	1130(1)	72(1)		
C(6)	5238(1)	13206(3)	1116(1)	56(1)		
C(7)	2967(1)	10439(2)	99(1)	42(1)		
C(8)	3670(1)	11544(3)	158(1)	45(1)		
C(9)	4157(1)	11583(2)	604(1)	43(1)		
C(10)	3925(1)	10509(4)	1087(1)	55(1)		
C(11)	3024(1)	10195(4)	1094(1)	55(1)		
C(12)	1998(2)	8615(4)	551(1)	71(1)		
C(13)	2816(1)	10845(2)	-858(1)	42(1)		
C(14)	2278(1)	11766(3)	-1181(1)	50(1)		
C(15)	2492(1)	12393(3)	-1685(1)	53(1)		
C(16)	3253(1)	12056(2)	-1876(1)	48(1)		
C(17)	3795(1)	11087(3)	-1578(1)	56(1)		
C(18)	3573(1)	10487(3)	-1074(1)	56(1)		
N(1')	-26(1)	6028(2)	2701(1)	48(1)		
N(2')	-518(1)	5668(2)	1824(1)	47(1)		
N(3')	-830(1)	7046(3)	-432(1)	62(1)		
O(1')	-4 57(1)	8222(3)	-630(1)	86(1)		
O(2')	-1317(1)	6202(3)	-696(1)	97(1)		
C(1')	2428(1)	6227(2)	2133(1)	42(1)		
C(2')	2671(1)	5340(3)	1671(1)	52(1)		
C(3')	3462(1)	5419(3)	1496(1)	62(1)		
C(4')	4023(2)	6362(3)	1782(1)	67(1)		
C(5')	3799(1)	7245(3)	2237(1)	67(1)		
C(6')	3004(1)	7177(3)	2413(1)	56(1)		
C(7')	113(1)	5839(2)	2155(1)	42(1)		
C(8')	955(1)	5788(2)	1986(1)	43(1)		
C(9')	1579(1)	6178(2)	2319(1)	40(1)		
C(10')	1400(1)	6658(3)	2906(1)	48(1)		
C(11')	644(1)	5783(3)	3091(1)	51(1)		
C(12')	-847(1)	5996(4)	2908(1)	61(1)		
C(13')	-482(1)	5918(2)	1258(1)	40(1)		
C(14')	-976(1)	4894(3)	921(1)	48(1)		
C(15')	-1079(1)	5250(3)	368(1)	52(1)		
C(16')	-694(1)	6624(3)	147(1)	45(1)		
C(17')	-182(1)	7633(3)	458(1)	45(1)		
C(18')	-79(1)	7258(3)	1012(1)	43(1)		

Атом	x	y	z	$U_{ m eq}$
H(2)	5158(11)	12304(23)	-228(8)	63(6)
H(3)	6375(14)	13707(30)	-157(10)	86(8)
H(4)	6903(14)	14928(29)	654(9)	82(7)
H(5)	6145(14)	14536(29)	1479(10)	88(8)
H(6)	4947(12)	12972(25)	1456(8)	68(6)
H(8)	3781(10)	12252(21)	-137(7)	40(5)
H(10A)	4079(14)	11052(29)	1398(10)	84(8)
H(10B)	4171(13)	9376(28)	1071(8)	69(7)
H(11A)	2726(12)	11285(26)	1187(8)	60(6)
H(11B)	2892(12)	9283(26)	1339(8)	66(6)
H(12A)	1556(22)	9390(44)	631(14)	164(15)
H(12B)	2033(18)	7532(43)	714(13)	133(12)
H(12C)	1885(18)	8211(38)	199(14)	129(12)
H(14)	1782(12)	11931(23)	-1041(7)	56(6)
H(15)	2137(12)	13068(24)	-1912(8)	62(6)
H(17)	4316(14)	10818(27)	-1740(9)	85(7)
H(18)	3915(14)	9859(29)	-869(9)	86(8)
H(2')	2307(12)	4648(25)	1490(8)	63(7)
H(3')	3592(12)	4727(26)	1200(9)	68(7)
H(4')	4553(14)	6418(26)	1675(8)	70(7)
H(5')	4143(13)	7950(27)	2430(8)	68(7)
H(6')	2850(13)	7834(27)	2741(9)	76(7)
H(8')	1024(11)	5401(22)	1610(8)	56(5)
H(10C)	1888(12)	6345(23)	3156(8)	59(5)
H(10D)	1346(10)	7873(24)	2931(7)	43(5)
H(11C)	468(12)	6258(25)	3428(9)	69(6)
H(11D)	747(11)	4556(25)	3122(7)	52(6)
H(12D)	-825(16)	6275(33)	3267(12)	107(9)
H(12E)	-1043(17)	4823(38)	2888(11)	114(11)
H(12F)	-1201(16)	6692(33)	2713(10)	94(9)
H(14')	-1274(12)	3966(26)	1086(8)	68(6)
H(15')	-1429(12)	4532(25)	170(8)	64(6)
H(17')	63(11)	8717(24)	302(7)	52(5)
H(18')	237(11)	8046(22)	1217(7)	48(5)

 $\begin{picture}(4) \put(0,0) \put(0,0)$

Молекупа <i>I</i>		Молекула 2		
СВЯЗЬ	d, Å	СВЯЗЬ	d, Å	
N(1)–C(7)	1.355(2)	N(1')-C(7')	1.358(2)	
N(1)–C(12)	1.449(3)	N(1')-C(12')	1.452(3)	
N(1)-C(11)	1.462(2)	N(1')-C(11')	1.457(2)	
N(2)-C(7)	1.301(2)	N(2')-C(7')	1.310(2)	
N(2)-C(13)	1.390(2)	N(2')-C(13')	1.391(2)	
N(3)-O(2)	1.219(2)	N(3')-O(2')	1.221(2)	
N(3)-O(1)	1.227(2)	N(3')-O(1')	1.221(2)	
N(3)-C(16)	1.452(2)	N(3')-C(16')	1.458(2)	
C(1)–C(6)	1.397(3)	C(1')-C(6')	1.383(3)	
C(1)–C(2)	1.397(3)	C(1')-C(2')	1.390(3)	
C(1)-C(9)	1.474(3)	C(1')-C(9')	1.479(2)	
C(2)-C(3)	1.384(3)	C(2')-C(3')	1.380(3)	
C(3)–C(4)	1.379(3)	C(3')-C(4')	1.370(3)	
C(4)-C(5)	1.364(4)	C(4')-C(5')	1.364(3)	
C(5)-C(6)	1.373(3)	C(5')-C(6')	1.387(3)	
C(7)-C(8)	1.460(3)	C(7')-C(8')	1.456(2)	
C(8)–C(9)	1.338(2)	C(8')-C(9')	1.336(2)	
C(9)-C(10)	1.504(3)	C(9')-C(10')	1.509(2)	
C(10)-C(11)	1.507(3)	C(10')-C(11')	1.502(3)	
C(13)-C(14)	1.383(3)	C(13')-C(14')	1.403(3)	
C(13)-C(18)	1.391(3)	C(13')-C(18')	1.393(3)	
C(14)-C(15)	1.371(3)	C(14')-C(15')	1.381(3)	
C(15)-C(16)	1.372(3)	C(15')-C(16')	1.374(3)	
C(16)-C(17)	1.375(3)	C(16')-C(17')	1.379(3)	
C(17)-C(18)	1.368(3)	C(17')-C(18')	1.385(2)	

Таблица 4 Валентные углы (ω) в молекуле соединения 3

Молек	ула <i>1</i>	Молеку	/ла 2
угол	ω, град.	угол	ω, град.
1	2	3	4
C(7)–N(1)–C(12) C(7)–N(1)–C(11)	120.2(2) 118.6(2)	C(7')–N(1')–C(12') C(7')–N(1')–C(11')	120.5(2) 118.8(2)
C(12)-N(1)-C(11)	116.2(2)	C(12')-N(1')-C(11')	118.4(2)
C(7)-N(2)-C(13)	121.9(2)	C(7')-N(2')-C(13')	123.0(2)
O(1)-N(3)-O(2)	122.6(2)	O(1')-N(3')-O(2')	122.9(2)
O(1)-N(3)-C(16)	118.4(2)	O(1')-N(3')-C(16')	119.1(2)
O(2)-N(3)-C(16)	118.9(2)	O(2')-N(3')-C(16')	118.1(2)
C(6)-C(1)-C(2)	117.1(2)	C(6')-C(1')-C(2')	117.9(2)
C(6)-C(1)-C(9)	122.0(2)	C(6')-C(1')-C(9')	120.7(2)
C(2)-C(1)-C(9)	120.8(2)	C(2')-C(1')-C(9')	121.4(2)
C(3)-C(2)-C(1)	120.9(2)	C(3')-C(2')-C(1')	120.8(2)
C(4)-C(3)-C(2)	120.3(2)	C(4')-C(3')-C(2')	120.2(2)
C(5)–C(4)–C(3)	119.6(2)	C(5')-C(4')-C(3')	120.1(2)

1	2	3	4
C(4)-C(5)-C(6)	120.7(2)	C(4')-C(5')-C(6')	119.9(2)
C(1)–C(6)–C(5)	121.4(2)	C(1')-C(6')-C(5')	121.0(2)
N(2)-C(7)-N(1)	118.8(2)	N(2')-C(7')-N(1')	117.7(2)
N(2)C(7)C(8)	124.6(2)	N(2')-C(7')-C(8')	125.2(2)
N(1)–C(7)–C(8)	116.6(2)	N(1')-C(7')-C(8')	117.0(2)
C(9)-C(8)-C(7)	124.0(2)	C(9')-C(8')-C(7')	123.6(2)
C(8)–C(9)–C(1)	122.5(2)	C(8')-C(9')-C(1')	123.1(2)
C(8)-C(9)-C(10)	117.5(2)	C(8')-C(9')-C(10')	118.0(2)
C(1)–C(9)–C(10)	120.0(2)	C(1')-C(9')-C(10')	118.9(2)
C(9)-C(10)-C(11)	111.4(2)	C(9')-C(10')-C(11')	110.0(2)
N(1)-C(11)-C(10)	110.3(2)	N(1')-C(11')-C(10')	111.6(2)
N(2)-C(13)-C(18)	123.8(2)	N(2')-C(13')-C(18')	124.0(2)
N(2)-C(13)-C(14)	118.3(2)	N(2')-C(13')-C(14')	117.4(2)
C(14)-C(13)-C(18)	117.8(2)	C(14')-C(13')-C(18')	117.9(2)
C(15)-C(14)-C(13)	121.7(2)	C(15')-C(14')-C(13')	120.6(2)
C(14)-C(15)-C(16)	118.8(2)	C(14')-C(15')-C(16')	119.4(2)
C(15)-C(16)-C(17)	121.4(2)	C(15')-C(16')-C(17')	122.0(2)
C(15)-C(16)-N(3)	118.8(2)	C(15')-C(16')-N(3')	119.5(2)
C(17)-C(16)-N(3)	119.8(2)	C(17')-C(16')-N(3')	118.5(2)
C(16)-C(17)-C(18)	118.9(2)	C(16')-C(17')-C(18')	118.1(2)
C(17)-C(18)-C(13)	121.4(2)	C(17')-C(18')-C(13')	121.8(2)

Параметры спектров ЯМР 1Н, относящихся к сигналам протонов тетрагидропиридинового фрагмента, аналогичны для всех полученных амидинов 3, 5-7. Так, синглетный сигнал протонов метильной группы проявляется в области 3.08-3.18 м. д., претерпевая заметный сдвиг (на 0.7 м. д.) в слабое поле по сравнению с исходным соединением 1. Протоны двух циклических метиленовых групп при С(5) и С(6) резонируют в виде двух триплетов в области 2.71-2.88 и 3.44-3.53 м. д. соответственно с константами спин-спинового взаимодействия 6.4-6.8 Гц. Винильный протон при С(3) регистрируется в виде несколько уширенного синглета (в случае соединения 3 в виде триплета с КССВ $J = 1.2 \, \Gamma$ ц) при 5.9–6.38 м. д. В области резонанса ароматических протонов наблюдаются сигналы протонов арильных групп, мультиплетность и интегральная интенсивность которых (см. экспериментальную часть) также подтверждает введение арилиминных фрагментов в тетрагидропиридиновое кольцо. Приведенные параметры спектров ЯМР ¹Н вполне однозначно (с учетом данных РСА) свидетельствуют о региоселективном иминировании тетрагидропиридинов 1, 2 по одному из двух аллильных положений с получением амидинов 3, 5-7. Образование последних происходит, повидимому, через предварительное отщепление перманганат-анионом гидрид-иона [8] от аллильных (метиленовых) групп пиперидеинового цикла. Однако селективность последующей нуклеофильной атаки карбкатионов А, В ариламином определяется возможностью стабилизации карбкатиона А в форме иминиевого иона С, в котором циклический атом азота служит внутренним нуклеофилом.

Таким образом, установлена возможность межмолекулярного окислительного иминирования тетрагидропиридинов ариламинами с образованием новой группы амидинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре UR-20 в таблетках КВг, масс-спектры получены на приборе MX-1303. Спектры $\text{ЯМР}^{-1}\text{H}$ записаны на приборах Bruker W-80 (80 МГц) и Bruker WM-250 (250 МГц) в растворе CDCl₃, внутренний стандарт ТМС. Контроль за ходом реакции и индивидуальностью получаемых соединений осуществляли методом ТСХ на пластинках Silufol UV-254, проявление парами иода. Разделение и очистку веществ проводили с помощью колоночной хроматографии на силикагеле L-60 (40/100).

1-Метил-2-(4-нитрофенилимино)-4-фенил-1,2,5,6-тетрагидропиридин (3). К смеси, состоящей из 1 г (5.8 ммоль) 1-метил-4-фенилтетрагидропиридина 1 и 0.95 г (6.8 ммоль) пара-нитроанилина в 50 мл ацегонитрила, при комнатной температуре добавляют за 20 мин 0.91 г (5.8 ммоль) тонкоизмельченного перманганата калия. Смесь перемешивают 2 ч, затем диоксид марганца отделяют и промывают его ацетонитрилом (3 × 10 мл). Фильтраты объединяют, после чего растворитель отгоняют под уменьшенным давлением. Остаток разделяют на колонке с силикагелем (элюент гексан-эфир, 2:1). При кристаллизации фракции с R_f 0.49 (ацетон) сначала получают 0.54 г (30%) амидина 3 в виде желтого аморфного порошка, т. пл. 92-94 °C. Из оставшегося маточного раствора после выдерживания в течение месяца получают еще 50 мг (3%) амидина 3 в виде прозрачных моноклинных кристаллов ярко-желтого цвета, т. пл. 118-120 °С. Обе порции вещества имеют идентичные спектры ИК и ЯМР 1Н и хроматографическую подвижность. Структура кристаллического образца изучена методом РСА. Хроматографическим путем выделена фракция с $R_f \,\,$ 0.17 (выход 2%), по т. пл. (78-80 °C) и спектральным данным оказавшаяся идентичной ранее полученному 1-метил-2-оксо-4-фенилтетрагидропиридину 4 [1, 4]. При осуществлении этой реакции при охлаждении (0 °C) или слабом нагревании (35-50 °C) целевой амидин 3 получен с выходом, не превышавшим 20%. ИК спектр, ν , см $^{-1}$: 1339 и 1550 (NO₂), 1624 и 1640 (C=C-C=N). Macc-criektp, m/z (I_{OTE} , %): 307 (100) (M⁺), 306(44), 259(27), 250(33); 230(6), 187(35), 166(37), 149(60). Спектр ЯМР ¹Н амидина **3**, δ , м. д., J (Гц): 2.88 (2H, т. т, $^2J = ^3J = 6.8$, 4 J = 1.2, 5-CH₂); 3.15 (3H, c, Me); 3,53 (2H, т, 2 J = 6.8, 6-CH₂); 6.28 (1H, т, 4 J = 1.2, 3-H); 6.9 и 8.16 (2H каждый, система AA'BB' нитрофенильного фрагмента, $^2J = 9.0$, $^3J = 2.0$); 7.36 (5H, c, Ph). Найдено, %: С 70.49; H 5.42; N 13.31. С₁₈H₁₇N₃O₂. Вычисленно, %: С 70.36; H 5.54; N 13.68.

1-Метил-2-(4-нитрофенилимино)-4-([2.2]парациклофан-4-ил)-1,2,5,6-тетрагидропиридин (5). Получают аналогично при окислительном иминировании 1.0 г (3.3 ммоль) 1-метил-4-(парациклофан-4-ил)тетрагидропиридина **2** *пара*-нитроанилином (4.3 ммоль). Выделено 0.42 г (29%) соединения **5** в виде аморфного желтого порошка, т. пл. 114–117 °C. R_f 0.37 (ацетон). ИК спектр, ν , см⁻¹: 1335 и 1556, 1627. Масс-спектр: 437 (М⁺). Спектр ЯМР 1 Н, δ , J (Гц): 2.71 и 3.44 (2H каждый, оба т, J = 6.4, 5-CH₂ и 6-CH₂); 2.7–3.2 (м, CH₂ парациклофановые); 3.13 (3H, с, Me); 5.9 (1H, с, 3-H); 6.0–6.6 (м, Н аром. парациклофановой части); 6.88 и 8.1 (2H каждый, оба д, J = 8.6, система AA'ВВ' нитрофенильного фрагмента). Найдено, %: С 76.70; Н 6.11; N 9.87. C_{28} H₂₇N₃O₂. Вычислено, %: С 76.89; Н 6.18; N 9.61.

2-(4-Бромфенилимино)-1-метил-4-фенил-1,2,5,6-тетрагидропиридин (6). Получают аналогично из смеси 1.0 г (5.8 ммоль) пиперидина **1** и 2.2 г (12.8 ммоль) *пара*-броманилина. Выход 0.34 г (17%) имина **6** в виде игольчатых светло-желтых кристаллов. Т. пл. 100–103 °C. R_f 0.58 (эфир). Спектр ЯМР 1 Н, δ , м. д., J (Гц): 2.78 и 3.50 (2Н каждый, оба т,

J=6.4, 5-CH₂ и 6-CH₂); 3.08 (3H, c, Me); 6.27 (1H, уш. c, 3-H); 6.64 и 7.25 (2H каждый, оба д, J=8.3, система AA'BB' n-бромфенильного фрагмента); 7.3 (5H, м, Ph). Найдено, %: C 62.81; H 5.17; N 8.36. $C_{18}H_{17}BrN_2$. Вычислено, %: C 63,34; H 4,99; N 8,21.

2-[4-(Фенилазо)фенил]имино-1-метил-4-фенил-1,2,5,6-тетрагидропиридин (7). Получают аналогично из смеси 0.5 г (2.9 ммоль) пиперидеина 1 и 0.57 г (2.9 ммоль) 4-амино-азобензола. Выделяют хроматографически 0.21 г (20%) имина 7 в виде оранжевых призматических кристаллов, т. пл. 156-159 °C. R_f 0.52 (ацетон). ИК спектр: 1629 см⁻¹ (C=C-C=N). Масс-спектр: 366 (М⁺). Спектр ЯМР ¹H, δ , м. д., J (Гп): 2.82 и 3.49 (2H каждый, оба т, J=6.4, 5- и 6-CH₂); 3.18 (3H, c, Me); 6.38 (1H, уш. c, 3-H); 6.89 и 7.83 (2H каждый, оба д, J=8.6, система AA'BB'); 7.2-7.5 (8H, м, 5H от C-Ph и 3H от N-Ph); 7.83 (2H, м, N-Ph). Найдено, %: С 78.81; H 6.34; N 15.01. $C_{24}H_{22}N_4$. Вычислено, %: С 78.69; H 6.01; N 15.30.

Рентгеноструктурный анализ соединения 3. Кристаллы амидина 3 состава $C_{18}H_{17}N_3O_2$, выращенные из эфира, моноклинные и имеют следующие кристаллографические параметры: пр. группа $P2_I/c$, a=16.498(4), b=7.930(2), c=24.270(5)Å, $\beta=90.92^\circ$, V=3174(1) ų, Z=8, $d_{\text{выч}}=1.286 \text{ г/см}^3$, M=307.35. Параметры элементарной ячейки и интенсивности 7644 отражений измерены на автоматическом четырехкружном дифрактометре SIEMENS P3/PC (T = 20 °C, λ Mo K_α -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\text{max}}=28^\circ$). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализованы объективно в разностном Фурье-синтезе и уточнены изотропно. Окончательные значения факторов расходимости $R_1=0.0462$ по 2858 независимым отражениям с $I>2\sigma$ и $wR_2=0.1518$ по всем 7709 отражениям. Все расчеты проведены по комплексу программ SHELXTL PLUS (PC version 5.0) [9]. Обозначения атомов приведены на рис. 1.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 99-03-32-940а).

СПИСОК ЛИТЕРАТУРЫ

- А. Т. Солдатенков, А. В. Темесген, И. А. Бекро, С. А. Солдатова, Н. И. Головцов, Н. Д. Сергеева, XTC, 1661 (2000).
- 1. А. Т. Солдатенков, И. А. Бекро, Ж. А. Мамырбекова, С. А. Солдатова, Э. Гловер, Н. Д. Сергеева, Л. Н. Кулешова, В. Н. Хрусталев, *ХГС*, 659 (1997).
- А. Т. Солдатенков, И. А. Бекро, С. А. Солдатова, Э. Гловер, А. В. Темесген, Л. Н. Кулешова, В. Н. Хрусталев, Н. Д. Сергеева, Изв. РАН. Сер. Химия, 2020 (1997).
- A. T. Soldatenkov, A. W. Temesgen, I. A. Bekro, T. P. Khristoforova, S. A. Soldatova, B. N. Anissimov, *Mendeleev Commun.*, No. 6, 243 (1997).
- 4. F. N. Allen, O. Kennard, D. S. Watson, J. Chem. Soc. Perkin Trans. 2, No. 12, 1 (1987).
- Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1982, 3, 607.
- M. Wozniak, D. J. Buurman, H. C. Van der Plas, J. Heterocycl. Chem., 22, 765 (1985).
- K. A. Gardner, J. M. Mayer, Science, 269, 1849 (1995).
- 8. G. M. Sheldrick, *SHELXTL. Version 5*. Software Reference Manual, Siemens Industrial Automation, Inc., Madison, 1994.

Российский университет дружбы народов, Москва 117198 e-mail: NVENSKOVSKI@ mx.pfu.edu.ru Поступило в редакцию 16.06.99

^аИнститут элементорганических соединений им. А. Н. Несмеянова РАН, Москва 117813