И. П. Локоть, Ф. С. Пашковский, Ф. А. Лахвич

СИНТЕЗ 3- И 5-АЛКИЛ-6-АЛКИЛ(АРИЛ)ТЕТРАГИДРОПИРАН-2,4-ДИОНОВ КОНДЕНСАЦИЕЙ ЭФИРОВ β -ОКСОКИСЛОТ С АЛЬДЕГИДАМИ И КЕТОНАМИ

Предложен метод получения 3- и 5-алкил-6-алкил(арил)тетрагидропиран-2,4-дионов, основанный на конденсации дианиона алкил(диалкил)ацетоуксусного эфира с альдегидами и кетонами.

Ключевые слова: дигидропироны-2, карбонильные соединения, тетрагидропирандионы, конденсация, лактонизация.

Природные и синтетические алкил(арил)тетрагидропиран-2,4-дионы привлекают внимание благодаря их разнообразным биологическим свойствам [1, 2]. Разработано множество подходов к получению 6-алкил-(арил)пиран-2,4-дионов, но методам синтеза 3,6- и 5,6-замещенных посвящены лишь единичные публикации [3, 4].

Как и в случае других циклических β -дикарбонильных соединений, введение алкильного заместителя алкилированием аниона тетрагидропиран-2,4-диона является неэффективным, поскольку при этом преобладающим является процесс О-алкилирования [5–9]. В связи с этим для выхода к целевым 3(5)-алкилтетрагидропиран-2,4-дионам типа 1 мы исследовали возможность введения алкильного заместителя на стадии формирования ациклических предшественников. Последние, как показывает ретросинтетический анализ соединений 1 (см. схему 1), являются замещенными эфирами 5-гидрокси-3-оксокислот 2 — продуктами альдольной конденсации легко доступных эфиров 3-оксокислот 3 [10–14] с карбонильными соединениями 4 [13, 15–19].

Схема 1

$$\begin{array}{c}
R^{2} \\
R^{3} \\
R^{4}
\end{array}$$

$$\begin{array}{c}
OH \\
OH
\end{array}$$

$$\begin{array}{c}
OH \\
OH$$

$$\begin{array}{c}
OH \\
OH
\end{array}$$

$$\begin{array}{c}
OH \\
OH$$

$$\begin{array}{c}$$

В настоящей работе представлены результаты разработки общей методики конденсации замещенных соединений 3 и 4. На первой стадии реакции обработкой эфира 3 2.5 эквивалентами диизопропиламида лития

были получены соответствующие дианионы, которые далее обрабатывали альдегидом или кетоном. Анализ реакционных смесей методом ТСХ показал наличие в них целевого тетрагидропирандиона 1 и его предшественника — эфира 5-гидрокси-3-оксокислоты 2. Для полного превращения последнего в продукт 1 в каждом случае полученную смесь без разделения омыляли водным раствором КОН. Дион 1 при действии КОН образует соль, относительно инертную к щелочи, а эфир 2 превращается в соль 5-гидрокси-3-оксокислоты, которая при подкислении самопроизвольно лактонизируется в целевой продукт 1 (см. схему 2).

 $\begin{aligned} \textbf{1a-c}, \ \textbf{3a}, \ \textbf{4a-c} \ R^1 &= CH_2CH = CH_2, \ R^2 = R^3 = H, \ \textbf{a} \ R^4 = CH_3, \ \textbf{b} \ R^4 = C_4H_9, \\ \textbf{c} \ R^4 &= C_6H_4OCH_3 - 4; \\ \textbf{1d}, \ \textbf{3b} \ R^1 &= R^3 = H, \ R^2 = C_6H_{13}, \ R^4 = C_6H_4OCH_3 - 4; \\ \textbf{1e-j}, \ \textbf{3c}, \ \textbf{4d-g} \ R^1 &= R^2 = R^3 = H, \ \textbf{1e} \ R^4 = C_4H_9, \ \textbf{1f} \ R^4 = C_6H_4OCH_3 - 4, \\ \textbf{1g}, \ \textbf{4d} \ R^4 &= C_6H_5, \ \textbf{1h}, \ \textbf{4e} \ R^4 = C_6H_4(OCH_3)_2 - 4, \ \textbf{1i}, \ \textbf{4f} \ R^3 = R^4 = CH_3, \\ \textbf{1j}, \ \textbf{4g} \ R^3 + R^4 = (CH_2)_8 \end{aligned}$

Синтез 3-алкилпроизводных тетрагидропирандиона был осуществлен на примере ск-аллилацетоуксусного эфира За, легко получаемого из бромистого аллила и ацетоуксусного эфира 3с в присутствии метилата натрия [20]. Конденсацией эфира За с уксусным 4а, масляным 4b альдегидами, а также 4-метоксибензальдегидом 4с синтезированы соответствующие 3,6-дизамещенные тетрагидропирандионы 1а-с. 5-Алкилпроизводное тетрагидропирандиона 1d было синтезировано из альдегида 4c и эфира каприлоилуксусной кислоты 3b - продукта метанолиза каприлоилпроизводного кислоты Мельдрума [14, 21], которое образуется с количественным выходом в мягких условиях из легко доступных кислоты Мельдрума и хлорангидрида каприловой кислоты. Кроме того, взаимодействием ацетоуксусного эфира 3с с альдегидами 4b,с, бензальдегидом 4d, 3,4-диметоксибензальдегидом 4e и ацетоном 4f были получены не содержащие заместителей в положениях 3 и 5 продукты 1е-ј соответственно. Использование в рассматриваемой реакции циклононанона 4g привело к спиросоединению 1і. Выходы продуктов 1 и их физико-химические свойства приведены в табл. 1.

Как можно было ожидать, стерические препятствия, вызываемые алкильным заместителем в эфире **3b**, внесли некоторый вклад в снижение выхода 5-гексилпроизводного **1d**, причем был выделен только *транс*изомер. Наличие аллильного заместителя в эфире **3a** и структура карбонильных соединений **4a-с** существенно не повлияли на выходы целевых продуктов.

Характеристики алкил(арил)пиран-2,4-дионов

Соеди-	Название	Брутго- формула	<u>Найде</u> Вычисл С	<u>но, %</u> зено, % Н	Т. пл., °С (из эфира)	ИК спектр*, v, см ⁻¹	Раство- ритель	Спектр ЯМР 1 Н, δ , м. д., КССВ (J), Гц	Выход, %
1a	3-Аллил-6-метилтетра- гидропиран-2,4-дион	C ₉ H ₁₂ O ₃	64.08 64.27	<u>7.09</u> 7.19	9697		CDCl ₃	1.45 (3H, д, ${}^{3}J$ = 6.5, CH ₃); 2.35 – 2.77 (4H, м, С <u>Н</u> ₂ CH= и СНС <u>Н</u> ₂ CO); 3.54 (1H, т, ${}^{2}J$ = 6.0, С <u>Н</u> CH ₂ C=); 4.52 (1H, м, С <u>Н</u> CH ₃); 5.10 (2H, м, =CH ₂); 5.90 (1H, м, =CH)	77
1b	3-Аллил-6-бутилтетра- гидропиран-2,4-дион	C ₁₂ H ₁₈ O ₃	68.68 68.55	8.65 8.63	126–128	755, 800,875, 915, 930, 1000, 1135, 1165, 1220, 1270, 1320, 1360, 1380, 1595, 2640, 2960	CDCl ₃	0.94 (3H, τ , ${}^{3}J = 7.0$, CH_{3}); 1.20–1.50 [4H, M, $CH_{3}(C\underline{H}_{2})_{2}$]; 1.60–1.75 (2H, M, $OCHC\underline{H}_{2}CH_{2}$); 2.32–2.83 (4H, M, $=CHC\underline{H}_{2}$ и $OCHC\underline{H}_{2}$); 3.55 (1H, τ , ${}^{3}J = 6.0$, $C\underline{H}CH_{2}$); 4.70 (1H, M, $C\underline{H}O$); 5.03–5.22 (2H, M, $=CH_{2}$); 5.92 (1H, M, $=CH_{2}$)	71
1c	3-Аллил-6-(4-метокси- фенил)тетрагидропиран- 2,4-дион	C ₁₅ H ₁₆ O ₄	69.08 69.22	6.12 6.20	156–158	735, 920, 1010, 1040, 1080, 1130, 1180, 1255, 1305, 1390, 1525, 1615 ym.	CDCl ₃ + CD ₃ OD	2.63 (1H, д. д, ${}^{3}J=12.5$, ${}^{2}J=17.0$, CHCH _A H _B CO); 2.92 (1H, д. д, ${}^{3}J=12.5$, ${}^{2}J=17.0$, CHCH _A H _B); 3.09 (2H, д. д, ${}^{3}J=6.0$, 1.0, =CHCH ₂); 3.34 (1H, т, ${}^{3}J=1.0$, CHCH ₂ CH=); 3.82 (3H, c, OCH ₃); 5.00 (2H, м, =CH ₂); 5.38 (1H, д. д, ${}^{3}J=4.0$, 12.0, ArCH); 5.90 (1H, м, =CH); 6.93 и 7.37 (2H и 2H, два д, ${}^{3}J=8.9$, o - и m -H _{Ar})	82
1d	транс-5-Гексил-6-(4-метоксифенил)- тетрагидропиран-2,4- дион	C ₁₈ H ₂₄ O ₄	70.92 71.03	7.96 7.95	8687	840, 900, 1040, 1190, 1220, 1265, 1525, 1595, 1665, 2865, 2935	CDCl₃	0.86 (3H, т, ${}^{3}J$ = 6.0, С $\underline{\text{H}}_{3}\text{CH}_{2}$); 1.20 (10H, м, С $\underline{\text{H}}_{3}$ (С $\underline{\text{H}}_{2}$) ₅); 2.73 (1H, м, С $\underline{\text{H}}\text{CH}_{2}$); 3.40 (1H, д, ${}^{2}J$ = 19, С $\underline{\text{H}}_{4}\underline{\text{H}}_{8}\text{CO}_{2}$); 3.58 (1H, д, ${}^{2}J$ = 19.0, С $\underline{\text{H}}_{4}\underline{\text{H}}_{8}\text{CO}_{2}$); 3.84 (3H, с, ОС $\underline{\text{H}}_{3}$); 5.37 (1H, д, ${}^{3}J$ = 7.8, ArC $\underline{\text{H}}$); 6.93 и 7.15 (2H и 2H, два д, ${}^{3}J$ = 8.5, o - и m -H _{Ar})	38
1e	6-Бутилтетрагидро- пиран-2,4-дион	C9H ₁₄ O ₃	63.60 63.51	8.31 8.29	Масло	1230, 1405, 1455, 1640, 2890, 2960	CDCl ₃	0.95 (3H, τ , ${}^{3}J = 7.0$, CH ₃); 1.20–1.90 [6H, M , 6-(CH ₂) ₃]; 2.30 (1H, M , M	76

1f	6-(4-Метоксифенил)- тетрагидропиран-2,4- дион	C ₁₂ H ₁₂ O ₄	65.65 65.45	<u>5.52</u> 8.29	131–132	830, 920, 955, 1010, 1040, 1070, 1180, 1260, 1295, 1350, 1525, 1620, 1720, 1740 yu.	CDCl₃	2.92 (2H, д, ${}^{3}J$ = 8.5, CHC $\underline{\text{H}}_{2}$); 3.50 (1H, д, ${}^{2}J$ = 20.0, CH _A H _B CO ₂); 3.70 (1H, д, ${}^{2}J$ = 20.0, C $\underline{\text{H}}_{4}$ H _B CO ₂); 3.84 (3H, c, C $\underline{\text{H}}_{3}$); 5.67 (1H, т, ${}^{3}J$ = 7.0, ArC $\underline{\text{H}}$); 6.95 и 7.17 (2H и 2H, два д, ${}^{3}J$ = 8.5, o - и m -H _{Ar})	82
							CDCl ₃ + CD ₃ OD	2.57 (1H, д. д., 2J = 17.5, 3J = 4.0, CHCH _A H _B); 2.84 (1H, д. д., 2J = 17.5, 3J = 12.0, CHCH _A H _B); 3.37 (меньше 2H из-за обмена на D, с, <u>CH</u> ₂ CO ₂); 3.84 (3H, с, CH ₃); 5.40 (1H, д. д., 3J = 4.0, 12.0, ArCH); 6.93 и 7.35 (2H и 2H, два д., 3J = 8.5, o - и m -H _{Ar})	
1g	6-Фенилтетрагидро- пиран-2,4-дион	C ₁₁ H ₁₀ O ₃	69.62 69.46	<u>5.30</u> 5.30	132–134 [15]	1250, 1310, 1345, 1635, 1715, 1735	CDCl ₃ + CD ₃ OD	2.36 (1H, μ , μ	87
1h	6-(2,4-Диметоксифенил)- тетрагидропиран-2,4- дион	C ₁₃ H ₁₄ O ₅	62.45 62.39	<u>5.65</u> 5.64	Масло	660, 675, 740, 775, 820, 860, 1030, 1140, 1270, 1470, 1525, 1595, 1710, 1740	CDCl ₃	2.76 (1H, д. д, 2J = 17.0, 3J = 4.5, CHCH _A H _B); 2.91 (1H, д. д, 2J = 17.0, 3J = 12.0, CHCH _A H _B); 3.40 (2H, c, CH ₂ CO ₂); 3.84 и 3.80 (6H, два .c, два CH ₃); 5.00 (1H, д.д, 3J = 4.0, 8.5, ArCH); 5.84 (1H, c, 2'-H); 6.75 (2H, два c, 5'- и 6'-H)	77
1i	6,6-Диметилтетрагидро- пиран-2,4-дион	C ₇ H ₁₀ O ₃	<u>59.10</u> 59.14	7.06 7.09	127–128	1020, 1115, 1190, 1210, 1245, 1290, 1330, 1355, 1580, 1660	CD₃OD	1.53 и 1.48 (6H, два с, два СН ₃); 2.47 [1H, с, (СН ₃) ₂ ССН _А Н _В]; 2.72 [1H, с, (СН ₃) ₂ СС <u>Н</u> _А Н _В]* ²	84
1j	1-Оксаспиро-[5.8]тетра- декан-2,4-дион	C ₁₃ H ₂₀ O ₃	69.50 69.61	9.00 8.99	120–122	860, 1000, 1030, 1220, 1265, 1320, 1480, 1610, 1675, 2930	CDCl₃	1.35–1.85 (14H, м, 7 CH ₂); 2.13 (2H, м, CC <u>H</u> ₂ CH ₂); 2,70 (2H, c, CCH ₂ CO); 3.43 (2H, c, C <u>H</u> ₂ CO ₂)	75

^{*} Спектры соединений 1е и 1h сняты для пленки вещества, остальные – для таблеток KBr. $*^2$ Сигнал протонов группировки $\mathrm{CH_2CO_2}$ не наблюдается вследствие обмена этих протонов на дейтерий.

Характеристики производных енольных форм алкил(арил)пиран-2,4-дионов*

Сое-	Название	Брутто- формула	<u>Найдено,%</u> Вычислено, %		ИК спектр, v, см ⁻¹	Спектр ЯМР 1 Н, δ , м.д., КССВ (J), Γ ц *2	Выход, %
ние 5a	3-Аллил-4-ацетокси-5,6- дигидро-6-метил-2-пирон	C ₁₁ H ₁₄ O ₄	C 62.97 62.85	H 6.72 6.71		1.42 (3H, д, ${}^{3}J$ = 7.0, 6-CH ₃); 2.20 (3H, с, C(O)C $\underline{\text{H}}_{3}$); 2.46 (1H, д. д, ${}^{2}J$ = 11.5; ${}^{3}J$ = 4.0, CHCH _A H _B); 2.66 (1H, д. Д, ${}^{2}J$ = 11.5, ${}^{3}J$ = 17.0, CHCH _A H _B); 3.00 (2H, м, C $\underline{\text{H}}_{2}$ CH=); 4.58 (1H, м, CH ₃ CH); 5.00 (2H, м, =CH ₂); 5.70 (1H, м, =CH)	94
5b	3-Аллил-4-ацетокси-6-(4- метоксифенил)-5,6- дигидро-2-пирон	C ₁₇ H ₁₈ O ₅	<u>67.44</u> 67,54	<u>5.99</u> 6.00	750, 825, 910, 930, 1015, 1040, 1075, 1130, 1205, 1255, 1290, 1315, 1330, 1380, 1430, 1470, 1525, 1600, 1625, 1650, 1690, 1730, 1765, 2820, 2870	2.21 (3H, с, C(O)CH ₃); 2.62 (1H, д. д, 3J = 4.0, 2J = 18.0, CH _A H _B); 3.03 (3H, м, CH _A H _B и =CHCH ₂); 3.78 (3H, с, OCH ₃); 5.02 (2H, м, =CH ₂); 5.36 (1H, д. д, 3J = 4.0, 13.0, ArCH ₂); 5.76 (1H, м, =CH); 6.83 и 7.28 (2H и 2H, два д, 3J = 8.5, o - и m -H _{Ar})	93
5c	4-Ацетокси-6-(4- метоксифенил)-5,6- дигидро-2-пирон	C ₁₄ H ₁₄ O ₅	64.18 64.12	<u>5.39</u> 5.38	915, 935, 970, 1160, 1185, 1205, 1260, 1290, 1310, 1385, 1435, 1470, 1525, 1625, 1670, 1720, 1775	2.26 (3H, c, C(O)CH ₃); 2.64 (1H, д. д. д, ${}^3J=3.5, {}^2J=18.0,$ CH _A H _B); 3.00 (1H, д. д. д, ${}^3J=12.0, {}^2J=18.0, {}^4J=1.5,$ CH _A H _B); 3.83 (3H, c, OCH ₃); 5.45 (1H, д. д, ${}^3J=3.5,$ 12.0, ArCH); 6.00 (1H, д, ${}^4J=1.5,$ =CHCO); 6.90 и 7.33 (2H и 2H, два д, ${}^3J=8.5,$ o- и m -H _{Ar})	95
ба	6-Бутил-5,6-дигидро-4- метокси-2-пирон	C ₁₀ H ₁₆ O ₃	65.04 65.19	8.74 8.75	745, 830, 880, 970, 1010, 1050, 1135, 1180, 1230, 1290, 1400, 1460 ym., 1630, 1720, 2885, 2965	0.95 (3H, T , $^{3}J = 7.0$, $CH_{3}CH_{2}$); 1.20–1.95 (6H, M , $CH_{3}(CH_{2})_{3}$); 2.27 (1H, A , A	94
6b	5,6-Дигидро-4-метокси- 6-фенил-2-пирон	C ₁₂ H ₁₂ O ₃	70.47 70.58	<u>5.91</u> 5.92		2.67 (1H, μ , μ	89

^{*}Соединения **5а-с**, **6а** – масла, т. пл. соединения **6b** 101–102 °C (эфир). *2Спектр соединения **5с** снят в смеси CDCl₃–CCl₄, остальных – в CDCl₃.

Тетрагидропирандионы 1 в растворах CDCl₃ и CD₃OD, по данным спектра ЯМР 1 Н, представлены преимущественно диоксоформой, причем благодаря енолизации происходит обмен протонов в положении 3 на дейтерий в растворе CD₃OD. Для более точного отнесения сигналов протонов двух таутомеров соединений 1 мы получили производные енольной формы; некоторые из них — замещенные дигидропироны 5 и 6 (см. схему 3). Физико-химические свойства продуктов 5 и 6 приведены в табл. 2.

Схема 3

1a,b,f
$$\xrightarrow{1. \text{Et}_3 \text{N}}$$

5a-d

1e,g $\xrightarrow{1. \text{Bu}_4 \text{NOH}}$

OMe

1a,b,f $\xrightarrow{1. \text{Et}_3 \text{N}}$

Oom

6a,b

5a-d

6a,b

5a
$$R^1 = CH_2CH = CH_2$$
, $R^3 = CH_3$; b $R^1 = CH_2CH = CH_2$, $R^3 = C_6H_4OCH_3-4$; c $R^1 = H$, $R^3 = C_6H_4OCH_3-4$; 6a $R^3 = C_4H_9$; b $R^3 = C_6H_5$

Форма сигналов протонов в положениях 3 и 5 соединений ${\bf 1}$ зависит от заместителей в цикле и растворителя (см. табл. 1, 3). Последнее, вероятно, объясняется изменением динамики конформационных переходов при образовании метанольных сольватов.

Таблица 3 Влияние замены растворителя на спин-спиновое взаимодействие протонов при атомах $C_{(3)}$ и $C_{(5)}$ 6-(4-метокси)тетрагидропиран-2,4-диона 1f

Н		CDCl ₃		CDCl ₃ + CD ₃ OD		
	δ, м.д.	форма сигнала	$J_{ m ab}$ или $J_{ m cd}$	δ, м. д.	форма сигнала	$J_{ m ab}$ или $J_{ m cd}$
а	2.92	Д	~0	2.57	д. д	17.5
b	2.92	Д	~0	2.84	д. д	17.5
с	3.50	Д	19	3.37	С	~0
d	3.70	д	19	3.37	С	~0

В результате реакции альдольной конденсации формально должны были образоваться две рацемические пары γ -гидрокси- β -оксоэфиров **2а**—**c**, приводящие к соответствующим рацемическим парам тетрагидропирандионов **1а**—**c** с двумя хиральными атомами — $C_{(3)}$ и $C_{(6)}$. Вследствие кетоенольной таутомерии, наблюдающейся в β -дикарбонильном фрагменте дионов **1**, возможно самопроизвольное изменение конфигурации атома $C_{(3)}$. Равновесие этой реакции смещается в сторону наиболее термодинамически стабильной рацемической пары (исходя из общих соображений наиболее предпочтительными выглядят изомеры, алкильные заместители которых занимают экваториальные положения).

Чтобы получить 5-алкилпроизводные тетрагидропиран-2,4-диона типа 1d с большим выходом, было логичным применить альтернативный метод – алкилирование дианиона тетрагидропиран-2,4-диона 1g или аниона его 4-метоксипроизводного 6b. Однако эта реакция привела к бензилиденацетону 7 с выходом 80% (см. схему 4). По-видимому, деструкция дианиона приводит к образованию нестабильной кислоты 8, отчетливо регистрируемой методом ТСХ (как и гидроксиэфиры 2, 3-оксокислота 8 окрашивается в коричневый цвет под действием спиртового раствора FeCl₃).

Схема 4

1g или 6b
$$\xrightarrow{\text{2 9KB.}}$$
 $\xrightarrow{\text{LDA}}$ $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{O}}$ $\xrightarrow{\text{O}}$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на спектрометре Brucker AC (рабочая частота 200 МГп) в растворах CDCl₃ и CD₃OD, внутренний стандарт ТМС, ИК спектры — на спектрофотометре UR-20 для таблеток КВг или пленки соединения. Т. пл. определены на блоке Кофлера. Для ТСХ использовали пластинки Silufol UV-254, этоирующие смеси: хлороформ—метанол [для пирандионов 1 и 3,5-диоксоэфиров 2; $R_f(1)/R_f(2) \sim 4$], эфир—гексан (для енолацетатов 5 и енолэфиров 6). Колоночную хроматографию проводили на силикагеле 60 (70–230 μ), элюент — хлороформ. Производные ацетоуксусного эфира 3 и карбонильные соединения 4 перед реакцией перегоняли. Спектральные характеристики бензилиденацетона 7 тождественны литературным данным [22].

Конденсация эфиров β-оксокарбоновых кислот 3 с альдегидами и кетонами 4. (Общая методика). К раствору диизопропиламида лития (0.025 моль), полученному из 0.025 моль бутиллития, 2.53 г (0.025 моль) диизопропиламина и 1.63 г (0.01 моль) гексаметиленфосфатриамида, в 50 мл абсолютного тетрагидрофурана при – 78 °C и перемешивании в атмосфере аргона добавляют 0.01 моль эфира 3. Через 20 мин добавляют 0.012 моль альдегида или кетона 4, смесь перемешивают 30 мин и обрабатывают 60 мл 2 н. НСІ. Органический слой отделяют, объединяют с эфирными экстрактами (2 × 100 мл) из водного слоя и упаривают. Остаток растворяют в 100 мл 1 н. КОН, раствор перемешивают 5 ч, охлаждают до 0 °С и добавляют к нему холодный водный раствор 6 н. НСІ до рН 0. Выпавший в осадок продукт 1 отфильтровают и промывают холодной водой. Экстракцией эфиром (2 × 100 мл) водного слоя после отделения продукта 1 с последующим осущением экстракта сульфатом натрия и упариванием растворителя получают дополнительное количество продукта 1. Для выделения 5-гексилпроизводного 1d используют колоночную хроматографию на силикагеле (элюент — хлороформ). Аналитические образцы получают перекристаллизацией продуктов из эфира.

Апетилирование алкилпроизводных тетрагидропиран-2,4-диона 1. (Общая методика). К 0.01 моль тетрагидропиран-2,4-диона 1 в 50 мл абсолютного дихлорметана при перемешивании добавляют 1.4 мл (0.01 моль) триэтиламина, после полного растворения диона 1 по каплям 0.78 мл (0.01 моль) хлористого ацетила в 15 мл дихлорметана. Через 1 ч смесь подкисляют 15 мл 0.2 н. HCl. Органический слой отделяют, промывают насыщенным раствором NaCl $(2 \times 50$ мл), сушат сульфатом натрия и упаривают. Для удаления примесей исходных соединений остаток наносят на небольшой слой Al_2O_3 и элюируют хлороформом.

Синтез 5,6-дигидро-4-метокси-2-пиронов 6. (Общая методика). К раствору 0.01 моль соответствующего тетрагидропиран-2,4-диона 1 в ацетоне добавляют 2.76 г (0.02 моль) прокаленного мелкоизмельченного поташа и 1.39 г (0.011 моль) диметилсульфата. Смесь кипятят ~4 ч, после чего осадок неорганической соли отфильтровывают и тщательно промывают ацетоном, который после промывки объединяют с фильтратом. Остаток после упаривания ацетона кристаллизуют из эфира.

СПИСОК ЛИТЕРАТУРЫ

- E. F. Steinmetz, Piper methysticum (Kava), Famous Drug Plant of the South Sea Islands, Elsevier, Amsterdam, 1960.
- W. B. Morc, M. T. Magalhaes, O. R. Gottlieb, Progress in the Chemistry of Organic Natural Products, Ed. L. Zechmeister, Springer-Verlag, Berlin, 20, 1962.
- 3. B. Eistert, G. Heck, Lieb. Ann. Chem., 681, 123 (1965).
- 4. R. M. Carlson, A. R. Oyler, J. R. Peterson, J. Org. Chem., 40, 1610 (1975).
- А. А. Ахрем, Ф. А. Лахвич, Л. Г. Лис, В. А. Хрипач, Н. А. Фильгенков, В. А. Козинец, Ф. С. Пашковский, ДАН, 311, 1381 (1990).
- 6. J. M. McIntosh, P. M. Beaumier, Can. J. Chem., 51, 843 (1979).
- 7. H. Stetter, W. Dierichs, Chem. Ber., 85, 1061 (1952).
- 8. H. O. House, Modern Synthetic Reactions, Benjamin, New York, 1972, 511.
- 9. Д. Н. Курсанов, З. Н. Парнес, М. И. Калинкин, Н. М. Лойм, *Ионное гидрирование*, Химия, Москва, 1979, 192.
- 10. M. W. Rathke, J. Deitch, Tetrah. Lett., 2953 (1971).
- 11. I. Shahak, Y. Sasson, Tetrah. Lett., 4207 (1973).
- 12. R. M. Carlson, J. L. Isidor, Tetrah. Lett., 4819 (1973).
- 13. S. N Huckin, L. Weiler, Tetrah. Lett., 1082 (1974).
- M. Sato, J. Sakaki, K. Takayama, S. Kobayashi, M. Suzuki, Ch. Kaneko, *Chem. Pharm. Bull.*, 38, 94 (1990).
- 15. J. R. Petersen, T. J. Winter, C. P. Miller, Synth. Commun., 18, 949 (1988).
- 16. I. Paterson, D. J. Wallace, C. J. Cowden, Synthesis, 639 (1998).
- 17. D. Seebach, K. Meyer, Angew. Chem., 86, 40 (1974).
- 18. T. Reffstrup, P. M. Boll, Acta Chem. Scand., B30, 613 (1976).
- 19. J. F. Wolfe, T. M. Harris, C. R. Hauser, J. Org. Chem., 29, 3249 (1964).
- 20. Органикум, пер. с нем., Мир, Москва, 1979, 2, 176.
- 21. M. Sato, H. Ogasawara, K. Oi, T. Kato, Chem. Pharm. Bull., 31, 1896 (1983).
- C. Pouchert, Aldrich Library of NMR Spectra, Ed. 2, Aldrich Chem. Comp. Inc., 1983, 2, 53D; Aldrich Library of IR Spectra, Ed. 3, Aldrich Chem. Comp. Inc., 1981, 852D.

Институт биоорганической химии НАН Беларуси, Минск 220141 e-mail: lokot@yahoo.com Поступило в редакцию 13.07.99 После переработки 29.06.2000