А. Ю. Егорова, В. А. Седавкина, З. Ю. Тимофеева

ГЕТЕРОЦИКЛИЗАЦИЯ ПРОИЗВОДНЫХ 4-ОКСОАЛКАНОВЫХ КИСЛОТ В 1,5-ДИЗАМЕЩЕННЫЕ ПИРРОЛИН-2-ОНЫ

Разработаны условия синтеза и получены 1-арил-5-алкил(арил)-3H- и 1-арил-5-алкил(арил)-5H-пирролин-2-оны на основе амидов и эфиров 4-оксоалкановых кислот. Установлено, что выход и соотношение 3H- и 5H-изомеров зависят от используемого в реакции субстрата.

Ключевые слова: амиды 4-оксоалкановых кислот, 1-арил-5-алкил-(арил)-3H-пирролин-2-оны, 1-арил-5-алкил(арил)-5H-пирролин-2-оны, эфиры 4-оксоалкановых кислот.

Ненасыщенные пятичленные азотсодержащие 2-оксогетероциклы занимают особое место в органической химии в связи с их обнаружением в виде фрагментов природных соединений, а также получением на их основе веществ с различными видами биологической активности [1]. Описано получение 1,5-дизамещенных пирролин-2-онов на основе реакций взаимодействия N-замещенных сукцинимидов с реактивом Гриньяра и *L*-ангеликолактона с первичными аминами [2, 3].

В настоящей работе представлены результаты синтеза 5-алкил(арил)-3H- и 5-алкил(арил)-5H-пирролин-2-онов на основе амидов и эфиров 4-оксоалкановых кислот, а также внутренних эфиров указанных кислот — 3H-фуран-2-онов — путем их взаимодействия с аминами ароматического ряда в различных условиях.

5-Алкил(арил)-3H-фуран-2-оны 1a—g реагируют с первичными ароматическими аминами (анилином, n-толуидином, n-броманилином) в растворе ксилола при $120\,^{\circ}$ С и соотношении реагентов 1:3 с образованием смесей 1-арил-5-алкил(арил)-3H-пирролин-2-онов 2a—g и 1-арил-5-алкил(арил)-5H-пирролин-2-онов 3a—f. Целевые продукты выделены в основном в виде 3H-изомеров 1,5-дизамещенных пирролин-2-онов 2a—g (выходы 70–75%). Содержание соединений 3a—f в реакционной смеси незначительно.

1-4 a R = CH₃, Ar = C₆H₅; **b** R = C₄H₉, Ar = C₆H₅; **c** R = i-C₄H₉, Ar = C₆H₅; **d** R = C₅H₁₁, Ar = C₆H₅; **e** R = C₆H₁₃, Ar = C₆H₅; **f** R = C₇H₁₅, Ar = C₆H₅; **g** R = C₆H₅, Ar = C₆H₄CH₃-p; **h** R = C₇H₁₅, Ar = C₆H₄-Br-p

Следует отметить, что 1-(4-метилфенил)-5-фенилпирролин-2-он (2g) существует и в твердом состоянии, и в растворе CDCl₃ только в виде 3H-изомера, 5H-форму выделить не удалось.

Образование соединений **2a**–**g** и **3a**–**f** проходит через стадию раскрытия фуранонового цикла в результате аммонолиза исходных соединений **1a**–**g** ароматическими аминами. Образующиеся амиды 4-оксоалкановых кислот **4** подвергаются последовательно циклизации в таутомерные 2-арил-5-алкил(арил)-5-гидрокси-2-оксопирролидины с дальнейшей дегидратацией и частичной изомеризацией 3H-формы **2a**–**f** в более устойчивые 5H-изомеры **3a**–**f**. Изомеризация соединений **2a**–**f** в соединения **3a**–**f** проходит и при их хранении на воздухе в условиях помещения.

Целенаправленно интермедиаты 4e-g получены в более мягких условиях в результате кипячения фуранонов 1 с аминами в бензоле при сокращении продолжительности процесса вдвое. Их физические константы представлены в табл. 1.

Таблица 1 Физико-химические характеристики синтезированных соединений

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. кип.,	$n_D^{\ \ 20}$	Выход,			
нение		С	Н	S	оС/мм рт. ст.		%			
2a	C ₁₁ H ₁₁ NO	76.58 76.36	6.30 6.41	8.01 8.10	155–158/4	1.5280	63			
2 b	C ₁₄ H ₁₇ NO	78.15 78.20	7.65 7.97	6.45 6.52	157–160/4	1.5340	68			
2c	C ₁₄ H ₁₇ NO	78.02 78.20	7.71 7.97	6.40 6.52	165–168/4	1.5328	72			
2d	C ₁₅ H ₁₉ NO	78.51 78.67	8.15 8.36	6.02 6.12	170–172/4	1.5360	72			
2e	C ₁₆ H ₂₁ NO	79.18 79.08	8.80 8.71	5.60 5.76	168–170/4	1.5368	70			
2f	C ₁₇ H ₂₃ NO	76.40 76.47	8.52 8.68	5.30 5.63	172–175/4	1.5380	75			
2g*	C ₁₇ H ₁₅ NO	79.98 82.00	5.72 5.07	5.61 5.63	179–181	_	82			
3a	$C_{11}H_{11}NO$	76.21 76.36	6.35 6.41	8.15 8.10	165–167/4	1.5484	35			
3 b	C ₁₄ H ₁₇ NO	78.25 78.20	7.80 7.97	6.50 6.52	165–168/4	1.5523	20			
3c	C ₁₄ H ₁₇ NO	78.01 78.20	7.57 7.97	6.42 6.52	170–173/4	1.5490	17			
3d	C ₁₅ H ₁₉ NO	78.15 78.67	8.10 8.36	<u>5.98</u> 6.12	175–178/4	1.5510	15			
3e	$C_{16}H_{21}NO$	78.95 79.08	8.60 8.71	<u>5.15</u> 5.76	176–178/4	1.5560	15			
3f	C ₁₇ H ₂₃ NO	76.12 76.47	8.60 8.68	5.05 5.25	178–180/4	1.5580	10			
4e*	$C_{16}H_{23}NO_2$	73.51 73.62	8.60 8.88	<u>5.07</u> 5.37	98–100	_	87			
4f*	$C_{17}H_{25}NO_2$	74.32 74.24	9.35 9.16	5.00 5.09	99–102	_	85			
4h*	$C_{17}H_{24}BrNO$	<u>56.81</u> 57.68	6.70 6.83	4.12 3.96	55–56	_	76			

^{*} Т. пл., °С.

ИК спектры соединений **4е**–**g** содержат полосы поглощения амидного карбонила при 1580–1540, карбонильной группы при 1690–1660 см⁻¹ и группы NH при 3330–3230 см⁻¹.

Сравнение данных ИК спектров соединений $2\mathbf{a}$ – \mathbf{g} и $3\mathbf{a}$ – \mathbf{f} показывает, что наибольшее различие в них обнаруживается в области колебаний лактамного карбонила. Для соединений $2\mathbf{a}$ – \mathbf{g} полоса поглощения группы C=O наблюдается в области 1690–1665, в то время как у изомера $3\mathbf{a}$ – \mathbf{f} она отмечена в области 1705–1700 см⁻¹.

В спектре ЯМР 1 Н (CDCl₃) пирролин-2-онов **2а**—с присутствует сигнал винильного протона в области 5.19–5.25 (д), а также сигналы протонов в положении 3 цикла в области 2.70–3.10 м. д., форма которых подтверждает строение 3H-формы (табл. 2).

Таблица 2 Спектры ЯМР ¹Н 1-фенил-5R-3H-пирролин-2-онов 2 и 1-фенил-5R-5H-пирролин-2-онов 3

Соеди-	Химические сдвиги, δ , м. д., J (Γ ц)							
	R	Ph	3-Н (2Н, д. д)	4-Н (1Н, д. д)	5-Н (1Н, м)			
2a	1.60 (3H, c)	7.15-7.46	3.00	$5.20 J_{34} = 3.30, 3.38$	_			
2 b	0.81-1.92 (9Н, м)	7.45-8.00	3.10	$5.19 J_{34} = 3.44, 3.54$	_			
2c	0.80-1.94 (9Н, м)	7.30-7.90	3.02	$5.25 J_{34} = 3.42, 3.55$	_			
3a	1.60 (3Н, д)	7.25-7.46	6.07	$7.14 J_{45} = 5.74, J_{34} = 6.54$	3.95			
3 b	0.81-1.92 (9Н, м)	7.40-8.00	6.10	$7.16 J_{45} = 5.70, J_{34} = 6.62$	3.87			
3c	0.80-1.94 (9Н, м)	7.30-7.80	6.18	$7.17 J_{45} = 5.71, J_{34} = 6.60$	3.90			

В спектрах соединений $3\mathbf{a}$ —с имеются сигналы винильных протонов 3-H и 4-H в области 6.07—6.18 и 7.14—7.17 соответственно, а также мультиплетный сигнал протона 5-H в области 2.27—2.35 м. д. (табл. 2).

Взаимодействие этиловых эфиров 4-оксоалкановых кислот **5а–с** с ароматическими аминами при кипячении в ксилоле протекает с образованием целевых 1-арил-5-алкил(арил)-3H-пирролин-2-онов **2а–с** с выходами 63–75%, а также изомерных 1-арил-5-алкил-5H-пирролин-2-онов **3а–с** с выходами 10–35%.

При проведении реакции в мягких условиях, в растворе этилового спирта, выходы соединений **2a–c** и **3a–c** в каждом случае в сумме не более 18%, поскольку реакция проходит через стадию образования промежуточных енаминов A и иминов B, циклизация которых вследствие снижения основности атома азота затруднена. Доказательство образования

интермедиантов A и B основано на данных спектров ЯМР 1 Н, записанных для реакционной смеси. Так, для таутомера A отмечены сигналы протонов группы при CH₂C=O в области 2.77 (д) и винильного протона в области 6.15 м. д. (т). При 8.2 м. д. наблюдается уширенный сигнал группы NH. В спектрах отмечены также сигналы в области 2.12 (м) и 3.63 (м), соответствующие протонам группировки CH₂CH₂C=O, принадлежащей форме B. Сигналы протонов фенильного заместителя присутствуют в области 7.01–7.10, алкильного – в области 0.80–1.84 м. д.

Наличие сигнала винильного протона и сохранение сигналов протонов сложноэфирной группы в области 4.95 (к, 2H) и 2.56 м. д. (т, 3H) с КССВ 4.52 Гц позволяет сделать заключение о протекании реакции через стадию образования интермедиатов A и B.

Физико-химические и спектральные характеристики соединений $2\mathbf{a}-\mathbf{g}$ и $3\mathbf{a}-\mathbf{f}$, полученных на основе $3\mathbf{H}$ -фуранонов $1\mathbf{a}-\mathbf{g}$, амидов $4\mathbf{e},\mathbf{f},\mathbf{h}$ и сложных эфиров $5\mathbf{a}-\mathbf{c}$, полностью совпадают (табл. 1, 2).

Таким образом, целевой синтез 1,5-дизамещенных 3H-пирролин-2-онов целесообразнее проводить на основе циклических эфиров 4-оксоалкановых кислот – 3H-фуран-2-онов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры снимали на приборе ИКС-29, спектры ЯМР 1 Н записаны на приборе Varian FT-80A (рабочая частота 80 МГц, растворитель CDCl₃), химические сдвиги приведены в шкале δ , внутренний стандарт ТМС. Выходы и характеристики полученных соединений представлены в табл. 1, 2. Этиловые эфиры 4-оксоалкановых кислот 5 получены по известной методике [4], 5-алкил-3Н-фуран-2-оны – по методике работы [5].

1-Арил-5-алкил(арил)-3Н-пирролин-2-оны (2а–g). Смесь 0.025 моль соединения **1а–g** и 0.1 моль аминирующего агента в абсолютном ксилоле кипятят 3 ч. Растворитель отгоняют, остаток фракционируют в вакууме.

1-Арил-5-алкил-3Н-пирролин-2-оны (2а-с) и 1-арил-5-алкил-5Н-пирролин-2-оны (3а-с) на основе этиловых эфиров 4-оксоалкановых кислот (5а-с). Смесь 0.2 моль соединения **5а-с**, 0.3 моль анилина и 80 мл абсолютного *о*-ксилола кипятят с обратным холодильником 3 ч. Продукт выделяют перегонкой в вакууме.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Maxwell, D. Rampersad, J. Natur. Prod., 52, 891 (1989).
- 2. R. Lures, Z. Linhartova, Coll. Czech. Chem. Commun., 25, 26 (1960).
- 3. R. Lukes, A. Zobacova, Coll. Czech. Chem. Commun., 24, 3189 (1959).
- 4. А. А. Пономарев, Синтезы и реакции фурановых веществ, Изд-во СГУ, Саратов, 1960, 243.
- 5. B. A. Седавкина, Н. A. Морозова, А. Ю. Егорова, И. Г. Остроумов, *ХГС*, 451 (1987).

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410600, Россия e-mail:TimofijiwaSU@ info.sgu.ru Поступило в редакцию 11.06.99 После доработки 22.06.2000