А. Ш. Оганисян, А. С. Норавян, А. А. Карапетян, М. С. Алексанян, Ю. Т. Стручков^а

ПРОИЗВОДНЫЕ КОНДЕНСИРОВАННЫХ ТИЕНОПИРИМИДИНОВ

13*. СИНТЕЗ И СТРОЕНИЕ ПИРАНО[4',3':4,5]ТИЕНО[3,2-*e*]-1,2,4-ТРИАЗОЛО[2,3-*c*]ПИРИМИДИНОВ

Разработаны методы синтеза 5-замещенных-10,10-диметил-10,11-дигидро-8H-пирано[4',3':4,5]тиено[3,2-*e*]-1,2,4-триазоло[2,3-*c*]пиримидинов. Проведено рентгеноструктурное исследование 10,10-диметил-5-(2-этоксиметилгидразино)-10,11-дигидро-8H-пирано[4',3':4,5]тиено[3,2-*e*]-1,2,4-триазоло[2,3-*c*]пиримидина.

Ключевые слова: дитиоксопиримидин, пиранотиенопиримидин, пиранотиенотриазолопиримидины.

В работе [2] описан синтез 2,4-дитиоксопиранотиенопиримидина 1, который был использован нами как исходное соединение при дальнейшей разработке методов получения новых производных пиранотиенопиримидинов.

Обработка дитиоксопиримидина 1 иодистым метилом в присутствии едкого кали привела к 2,4-диметилтиопроизводному 2. Конденсацией последнего с гидразингидратом синтезирован 4-гидразино-2-метилтиотиенопиримидин 3. Доказано, что замещение метилтиогруппы происходит только в положении 4 пиримидинового кольца. Изучена конденсация 4-гидразинопиримидина 3 с муравьиной кислотой, а также ее ортоэфиром и при этом в обоих случаях получено производное триазол[4,3-*c*]пиримидинового ряда 4.

* Сообщение 12 см. [1].

Взаимодействием 2-метилтио-1,2,4-триазоло[4,3-*c*]тиенопиримидина (4) с гидразингидратом и конденсацией полученного соединения 5 с ортоэфиром муравьиной кислоты предполагалось получить триазолотиенопиримидин 6. Однако методом рентгеноструктурного анализа было доказано, что в ходе этих превращений получаются новые производные пиранотиено[3,2-*e*]-1,2,4-триазоло[2,3-*c*]пиримидинового ряда 7, 8.

Полученные результаты показывают, что наряду с замещением метилтиогруппы в соединении **4** имеет место изомеризация триазольного кольца, приводящая к продуктам **7** и **8**. Строение соединения **8** и длины связей указаны на рисунке.

Строение молекулы 8 (штриховыми линиями показаны водородные связи)

Координаты атомов приведены в табл. 1, валентные углы (ω) – в табл. 2. Приведенные в табл. 2 геометрические параметры молекулы **8** имеют обычные значения [3, 4] и не требуют особых комментариев.

Атом	x/a	y/b	z/c	В _{изо}
C(1)	-1961(3)	1978(1)	3672(3)	3.8(1)
O(2)	-524(2)	1799(1)	3190(2)	3.5(1)
C ₍₃₎	-547(3)	1487(1)	1728(3)	3.2(1)
C ₍₄₎	-1370(3)	838(1)	1806(3)	3.3(1)
C _(4a)	-2799(3)	905(1)	2601(3)	3.0(1)
C(5)	-4013(3)	447(1)	2613(3)	2.8(1)
C ₍₆₎	-5171(3)	650(1)	3476(1)	3.2(1)
S ₍₇₎	-4788(1)	1406(0)	4258(1)	3.8(1)
C(1a)	-3057(3)	1432(1)	3446(3)	3.2(1)
N(8)	-6491(2)	336(1)	3700(2)	3.4(1)
C ₍₉₎	-6669(3)	-817(1)	3015(3)	3.3(1)
N(10)	-5585(2)	-463(1)	2132(2)	3.2(1)
C(11)	-4253(3)	-154(1)	1880(3)	3.0(1)
N(12)	-3489(2)	-505(1)	933(2)	3.8(1)
C(13)	-4418(3)	-1019(1)	661(3)	4.2(1)
N ₍₁₄₎	-5700(2)	-1031(1)	1333(3)	3.9(1)
N(15)	-7900(2)	-596(1)	3079(3)	4.0(1)
N(16)	-9051(2)	-387(1)	3933(3)	4.0(1)
C(17)	-10141(3)	-778(1)	4000(3)	3.8(1)
O(18)	-10211(3)	-1352(1)	3284(2)	4.1(1)
C(19)	-11536(3)	-1737(1)	3560(3)	5.0(1)
C(20)	-11516(4)	-2324(2)	2633(4)	6.5(1)
C(21)	1096(3)	1381(1)	1460(3)	4.4(1)
C(22)	-1263(3)	1938(1)	558(3)	4.4(1)

Координаты атомов (×10⁴) и их эквивалентные изотропные параметры в молекуле соединения 8

Дигидропирановое кольцо, как и ожидалось, имеет слабоискаженную конформацию полукресла (выходы атомов $O_{(2)}$ и $C_{(3)}$ из среднеквадратичной плоскости остальных атомов цикла –0.325 и 0.398 Å соответственно. Трициклическая система, включая конденсированные тиофеновый, пиримидиновый и триазольный циклы, фактически плоская (индивидуальные отклонения атомов от среднеквадратичной плоскости этой системы не превышают 0.05Å). Плоской является и группировка $N_{(15)}$ – $N_{(16)}$ = $C_{(17)}$ – $O_{(18)}$, которая фактически копланарна с указанной трициклической системой (двугранный угол между среднеквадратичными плоскостями 0.9°). Такое взаимное расположение рассматриваемых фрагментов, по-видимому, обусловлено наличием внутримолекулярной "вилочной" водородной связи: $N_{(15)}$ – $H_{(15)}$... $N_{(14)}$ (N...O 2.595(3), H–O 2.27Å, N–H...O 104(2)°) и $N_{(15)}$ – $H_{(15)}$... $N_{(14)}$ (N...N 2.726(3), H...N 2.39(2)Å, N–H...N 105(2)°). В пользу этого предположения свидельствует плоскостригональная конфигурация атома $N_{(15)}$ (сумма валентных углов 360°).

Таблица 2

Угол	ω□□. град.□	Угол	ω.□□ град.□
O(2)C(1)C(1a)	110.8(2)	$S_{(7)}C_{(6)}N_{(8)}$	121.2(2)
$C_{(1)}O_{(2)}C_{(3)}$	114.9(2)	$C_{(1a)}S_{(7)}C_{(6)}$	90.1(1)
$O_{(2)}C_{(3)}C_{(4)}$	109.1(2)	$C_{(6)}N_{(8)}C_{(9)}$	115.4(2)
$O_{(2)}C_{(3)}C_{(21)}$	104.1(2)	$N_{(8)}C_{(9)}N_{(10)}$	121.5(2)
$O_{(2)}C_{(3)}C_{(22)}$	109.5(2)	$N_{(8)}C_{(9)}N_{(15)}$	124.3(2)
$C_{(4)}C_{(3)}C_{(21)}$	110.7(2)	$N_{(10)}C_{(9)}N_{(15)}$	114.2(2)
$C_{(4)}C_{(3)}C_{(22)}$	112.6(2)	$C_{(9)}N_{(10)}C_{(11)}$	124.2(2)
$C_{(21)}C_{(3)}C_{(22)}$	110.5(2)	$C_{(9)}N_{(10)}N_{(14)}$	125.4(2)
$C_{(3)}C_{(4)}C_{(4a)}$	111.4(2)	$C_{(11)}N_{(10)}N_{(14)}$	110.4(2)
$C_{(4)}C_{(4a)}C_{(1a)}$	121.0(2)	$C_{(5)}C_{(11)}N_{(10)}$	116.0(2)
$C_{(4)}C_{(4a)}C_{(5)}$	127.1(2)	$C_{(5)}C_{(11)}N_{(12)}$	134.7(2)
$C_{(1a)}C_{(4a)}C_{(5)}$	111.8(2)	$N_{(10)}C_{(11)}N_{(12)}$	109.3(2)
$C_{(1)}C_{(1a)}C_{(4a)}$	123.4(2)	$C_{(11)}N_{(12)}C_{(13)}$	102.1(2)
$C_{(1)}C_{(1a)}S_{(7)}$	123.5(2)	$N_{(12)}C_{(13)}N_{(14)}$	117.8(2)
$C_{(4a)}C_{(1a)}S_{(7)}$	113.1(2)	$N_{(10)}N_{(14)}C_{(13)}$	100.5(2)
$C_{(4a)}C_{(5)}C_{(6)}$	112.9(2)	$C_{(9)}N_{(15)}N_{(16)}$	118.3(2)
$C_{(4a)}C_{(5)}C_{(11)}$	131.8(2)	$N_{(15)}N_{(16)}C_{(17)}$	115.1(2)
$C_{(6)}C_{(5)}C_{(11)}$	115.2(2)	$N_{(16)}C_{(17)}O_{(18)}$	123.5(2)
$C_{(5)}C_{(6)}S_{(7)}$	111.2(2)	C ₍₁₇₎ O ₍₁₈₎ C ₍₁₉₎	114.5(2)
$C_{(5)}C_{(6)}N_{(8)}$	127.7(2)	O(18)C(19)C(20)	108.5(3)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на приборе UR-20 в вазелиновом масле, спектры $\text{ЯМP}^{-1}\text{H}$ – на спектрометре Varian T-60, масс-спектры получены на приборе MX-1303 с ионизирующим напряжением 70 эВ. ТСХ проведена на пластинках Silufol UV-254, проявитель пары иода. Расчеты проведены по программам INEXTL [5] на ЭВМ Eclipse S/200.

6,6-Диметил-2,4-диметилтио-5,6-дигидро-8Н-пирано[4',3':4,5]тиено[2,3-d]пиримидин (2). К раствору 2.84 г (0.01 моль) тиенопиримидина 1 [2], 1.12 г (0.02 моль) едкого кали в 50 мл этанола при температуре 40–50 °С по каплям добавляют 2.82 г (0.02 моль) иодистого метила в 10 мл этанола. Перемешивание продолжают 2 ч. Реакционную смесь разбавляют 50 мл воды. Выпавшие кристаллы отфильтровывают, промывают водой и высушивают. Получают 2.6 г (83%) пиримидина 2. Т. пл. 133–134 °С (этанол). R_f 0.52 (эфир-бензол, 1 : 1). Спектр ЯМР ¹Н (пиридин-d₅), δ, м. д.: 4.70 (2H, с, 8-CH₂); 2.96 (2H, с, 5-CH₂); 2.60 (3H, с, 2-SCH₃); 2.54 (3H, с, 4-SCH₃); 1.30 (6H, с, 6-(CH₃)₂). Масс-спектр, m/z($I_{отн}$, %): 312(M⁺) (100); 297 (17), 262 (46), 254 (18), 239 (18). Найдено, %: С 50.01; Н 5.42; N 8.90; S 30.80. $C_{13}H_{16}N_2OS_3$. Вычислено, %: С 49.82; Н 5.22; N 9.11; S 30.79.

4-Гидразино-6,6-диметил-2-метилтио-5,6-дигидро-8Н-пирано[4',3':4,5][2,3-d]пиримидин (3). Смесь 3.12 г (0.01 моль) соединения 2, 5 мл 98% гидразингидрата и 10 мл бутанола кипятят 8 ч. После охлаждения выпавшие кристаллы отфильтровывают, промывают водой и высушивают. Получают 2.6 г (88%) пиримидина 3. Т. пл 237–238 °C (бутанол). R_f 0.47 (этанол–хлороформ, 2 : 1). ИК спектр, v, см⁻¹: 1620 (C=N), 3150–3350 (NH–NH₂). Спектр ЯМР ¹Н (пиридин-d₅), δ , м. д.: 4.86 (2H, с, 8-CH₂); 4.66 (3H, ш. с, NHNH₂); 3.03 (2H, с, 5-CH₂); 2.66 (3H, с, S-CH₃); 1.28 (6H, с, 6-(CH₂)₂). Найдено, %: С 48.50; H 9.62; N 18.61; S 21.39. C₁₂H₁₆N₄OS₂. Вычислено, %: С 48.60; H 9.38; N 18.90; S 21.55.

10,10-Диметил-5-метилтио-10,11-дигидро-8Н-пирано[4',3':4,5]тиено[3,2-*e*]-1,2,4-триазоло[4,3-*c*]пиримидин (4). А. Смесь 2.96 г (0.01 моль) соединения 3 и 15 мл ортомуравьиного эфира кипятят 5 ч. После охлаждения выпавшие кристаллы отфильтровывают, 684

Валентные углы ω (град.) в молекуле соединения 8

промывают эфиром и высушивают. Получают 2.3 г (78%) триазолопиримидина **4**. Т. пл. 267–269 °С (этанол). R_f 0.48 (бутанол–пиридин, 2:1). Спектр ЯМР ¹Н (пиридин-d₅), δ , м. д.: 8.87 (1H, c, 3-CH); 4.80 (2H, c, 8-CH₂); 3.33 (2H, c, 11-CH₂); 2.62 (3H, c, S-CH₃); 1.33 (6H, c, 10-(CH₂)₂). Найдено, %: C 50.52; H 4.28; N 20.26; S 12.06. $C_{13}H_{14}N_4OS_2$. Вычислено, %: C 50.11; H 4.52; N 20.41; S 11.70.

Б. Смесь 2.96 г (0.01 моль) соединения **3** и 15 мл муравьиной кислоты кипятят 5 ч. Охлажденную реакционную смесь нейтрализуют водным раствором едкого кали. Выпавшие кристаллы отфильтровывают, промывают водой и перекристаллизовывают из этанола. Получают 2.2 г (76.6%) соединения **4**, не дающего депрессии т. пл. в смешанной пробе с образцом, полученным по методике А.

5-Гидразино-10,10-диметил-10,11-дигидро-8Н-пирано[4',3':4,5]тиено[3,2-е]-1,2,4триазоло[4,3-с]пиримидин (7). Смесь 3.06 г (0.01 моль) триазолопиримидина **4**, 5 мл 98% гидразингидрата и 20 мл бутанола кипятят 12 ч. После охлаждения выпавшие кристаллы отфильтровывают, промывают водой и высушивают. Получают 2.2 г (72.0%) пиримидина **7**. Т. пл. 282–283 °С (диметилсульфоксид). *R_f* 0.49 (пиридин–хлороформ, 3 : 1). ИК спектр, v, см⁻¹: 1630 (C=N), 3100–3320 (NH–NH₂). Найдено, %: С 50.21; Н 4.90; N 28.94; S 11.63. С₁₂Н₁₄N₆OS. Вычислено, %: С 50.00; Н 4.98; N 28.96; S 11.03.

10,10-Диметил-5-N-(2-этоксиметилгидразино)-10,11-дигидро-8Н-пирано[4',3':4,5]тиено[3,2-*e***]-1,2,4-триазоло[2,3-***c***]пиримидин (8)**. Смесь 2.9 г (0.01 моль) триазолопиримидина **7**, 20 мл ортомуравьиного эфира кипятят 3 ч. Выпавшие кристаллы отфильтровывают, промывают эфиром и высушивают. Получают 2.8 г (81%) пиримидина **8**. Т. пл. 226–228 °С (этанол). R_f 0.51 (пиридин–хлороформ–этанол, 2:1:1). ИК спектр, v, см⁻¹: 1620 (C=N), 3150 (NH). Найдено, %: С 50.40; H 4.96; N 24.18; S 9.02. $C_{15}H_{18}N_6O_2S$. Вычислено, %: C 50.21; H 5.02; N 24.24; S 9.24.

Рентгеноструктурное исследование соединения 8. Параметры элементарной ячейки и интенсивности 2457 независимых отражений измерены на четырехкружном автоматическом дифрактометре Hilger-Watts (λ МоК α , $\theta/2\theta$ -сканирование, графитовый монохроматор, $\theta_{max} = 28^{\circ}$). Кристаллы моноклинные: a = 8.900(1), b = 20.594(2), c = 8.954(1)Å, $\beta = 93.35(1)^{\circ}$, V = 1638Å³, M = 346.4, $d_{\text{выч}} = 1.40 \text{ г/см}^3$, Z = 4, пространственная группа $P2_1/a$. Структура расшифрована прямым методом и уточнена блок-диагональным МНК в анизотропном приближении для неводородных атомов. Положения H найдены из разностного синтеза Фурье и уточнены МНК в изотропном приближении с $B_{\mu_{30}} = 5$ Å². Окончательные значения факторов расходимости R = 0.042, $R_w = 0.043$ по 1997 отражениям с $I > 4\sigma$. Координаты атомов приведены в табл. 1.

Работа выполнена в рамках темы 96-999, финансируемой из госбюджета Республики Армения.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Ш. Оганисян, А. С. Норавян, ХГС, 1388 (1998).
- 2. А. Ш. Оганисян, А. С. Норавян, Г. М. Аветисян, ХГС, 803 (1998).
- 3. А. А. Карапетян, М. С. Алексанян, А. Ш. Оганисян, Ю. Т. Стручков, *Ж. структур. химии*, **35**, 197 (1994).
- 4. F. H. Allen, O. Kennard, J. Chem. Soc. Perkin Trans. 2, S1 (1987).
- 5. Р. Г. Герр, А. И. Яновский, Ю. Т. Стручков, Кристаллография, 28, 1029 (1983).

Центр исследования структуры молекул НАН РА, Ереван 375014 e-mail: admin@msrc.am Поступило в редакцию 02.04.99

^аИнститут элементоорганических соединений РАН, Москва 117813, Россия