В. П. Кругленко

БРОМИРОВАНИЕ ЗАМЕЩЕННЫХ 5Н-ИМИДАЗО[1,2-*b*]-1,2,4-ТРИАЗЕПИН-4-ОНА И -ТИОНА

Изучено взаимодействие замещенных 5H-имидазо[1,2-b]-1,2,4-триазепин-4-она и -тиона с бромом и N-бромсукцинимидом. Показано, что в зависимости от степени замещения природы галогенирующего агента и условий проведения реакции образуются производные 3- и 8-бром-, 3,8-дибромимидазо[1,2-b]-1,2,4-триазе- пина и 5H-2-бромметил-3-метил-7,8-дифенилимидазо[1,2-b]-1,2,4-триазе- пин-4-он.

Ключевые слова: 5H-имидазо[1,2-b]-1,2,4-триазепин-4-он и -тион, бромирование.

В продолжение исследования реакционной способности производных имидазо[1,2-*b*]-1,2,4-триазепина [1–3] изучено взаимодействие ди-, три- и тетразамещенных 5H-имидазо[1,2-*b*]-1,2,4-триазепин-4-она(тиона) **1–4** с бромом и N-бромсукцинимидом (БСИ). Установлено, что направление реакции бромирования монофенилзамещенного **1** зависит от природы бромирующего агента, растворителя, соотношения реагирующих веществ и температуры процесса. При нагревании эквимолекулярных количеств соединения **1** с БСИ до 60 °C в четыреххлористом углероде выделен только 8-бромимидазотриазепин **5** (табл. 1). В спектре ЯМР ¹Н последнего отсутствует сигнал протона 8-H, но как и в исходном имидазотриазепиноне **1** наблюдаются сигналы протонов иминной, метиленовой, метильной групп и фенильного заместителя при 11.62 (1H, c, NH); 3.64 (2H, c, CH₂); 2.28 (3H, c, CH₃) и 7.73 м. д. (5H, м, H аром.) соответственно.

 $\mathbf{1}$ R = R¹ = H; $\mathbf{2}$, $\mathbf{3}$ R = Ph, R¹ = H; $\mathbf{4}$ R = Ph, R¹ = Me; $\mathbf{1}$, $\mathbf{2}$, $\mathbf{4}$, $\mathbf{7}$ X = O; $\mathbf{3}$, $\mathbf{8}$ X = S В масс-спектре соединения $\mathbf{5}$ наблюдаются два пика молекулярного $\mathbf{548}$

иона (M^+) одинаковой интенсивности, что указывает на присутствие одного атома брома в молекуле. Схема фрагментации M^+ типична для имидазотриазепинонов [2–4] и включает реализацию процессов [M– CH_3CN] $^+$ – Φ , [Φ –CHCO] $^+$ – Φ 2. Отсутствие атома брома в ионах Φ – Φ 2 вместе с образованием заряженных фрагментов M_H и [M_H и

С повышением температуры до 80 $^{\circ}$ С реакция перестает быть селективной и образуется смесь 8-бром- и 3,8-дибромзамещенных **5** и **6**. При этом выход первого из них остается превалирующим (табл. 1). Увеличение количества БСИ вдвое меняет соотношение продуктов реакции в пользу дибромпроизводного **6**, а замена CCl_4 на бензол полностью исключает образование 8-бромимидазотриазепина **5**.

Взаимодействие соединения **1** с бромом в уксусной кислоте при комнатной температуре ведет к преимущественному образованию 3,8-дибромзамещенного **6**, а бромирование в ДМФА при нагревании – к образованию только 8-бромимидазотриазепина **5** (табл. 1).

. Таблица 1 Условия и результаты реакции бромирования соединения 1

Метод	Бромирующий реагент (соотношение	Растворитель	Температура реакции, °С	Продолжи- тельность реакции, ч	Выход продуктов, %	
	исходных веществ, моль)		реакции, С		5	6
A	БСИ (1:1)	CCl ₄	55-60	4	63*	_
Б	БСИ (1:1)	CCl ₄	80	3	35*	10
В	БСИ (1:1)	Бензол	80	3	42*	8
Γ	БСИ (1:2)	CCl ₄	80	4	8	41
Д	БСИ (1:2)	Бензол	80	4	_	55
E	Br ₂ (1:2)	CH₃COOH	20–25	5	12	42
Ж	Br ₂ (1:1)	ДМФА	65–70	4	_	32*
3	Br ₂ (1:2)	ДМФА	65–70	4	_	52
И	Br ₂ (1:3)	ДМФА	65–70	4	_	58

^{*} Из реакционной смеси выделено также исходное соединение **1** в количестве **20** (A), **15** (Б), **8** (В) и **10** % (Ж).

В спектре ЯМР 1 Н 3,8-дибромимидазотриазепина **6**, как и его монобромзамещенного аналога **5** наблюдаются сигналы протонов иминной, метильной и фенильной групп при 12.02, 2.43 и 7.60 м. д. соответственно, однако вместо сигналов протонов метиленовой группы проявляется синглет метинового протона при 5.74 м. д. Последнее указывает на присутствие второго атома брома при атоме $C_{(3)}$ в молекуле бицикла **6**. Направление реакции бромирования соединения **2**, у которого при атоме $C_{(8)}$ находится фенильный заместитель, не зависит от природы галогенирующего агента, растворителя, температурного режима и протекает с образованием 3-бромимидазотриазепинона **7** [1].

Взаимодействие тиона **3** с бромом в уксусной кислоте при 20–25 °C или кипячение с БСИ в ССІ₄ приводят к образованию 5H-3-бром-2-метил-7,8-

дифенилимидазо[1,2-*b*]-1,2,4-триазепин-4-тиона (**8**). Это же соединение образуется при взаимодействии бромимидазотриазепина **7** с P_2S_5 в кипящем пиридине.

В спектре ЯМР ¹Н соедиения **8** имеются следующие сигналы: 11.78 (1H, c, NH); 5.63 (1H, c, CH); 2.34 (3H, c, CH₃); 7.81 м. д. (10H, м, H аром.).

При бромировании бицикла **4**, у которого реакционноспособные положения 3 и 8 блокированы метильным и фенильным заместителями, направление реакции иное. Так, при кипячении соединения **4** с БСИ в четыреххлористом углероде был выделен 5H-2-бромметил-3-метил-7,8-дифенилимидазо[1,2-*b*]-1,2,4-триазепин-4-он (**9**).

В масс-спектре продукта **9** регистрируются сигналы M^+ с m/z 410, 408 (соотношение интенсивностей 1:1), что наряду с пиками ионов $[M-Br]^+$, $[Br]^+$ и $[HBr]^+$ с m/z 329, 81, 79 и 82, 80 свидетельствует о присутствии одного атома брома в молекуле. Наличие в масс-спектре бицикла **9** сигнала иона $[M-BrCH_2CN]^+$ с m/z 289 и отсутствие пика иона $[M-CH_3CN]^+$, в случае соединений с незамещенной метильной группой при атоме $C_{(2)}$ [2, 3], является прямым подтверждением его строения как 2-бромметил-замещенного имидазотриазепинона **9**.

Таблица 2 Характеристика синтезированных соединений

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	R_f	Выход, %	
		C	Н	Br	N	C		(метод)
5*	C ₁₃ H ₁₁ BrN ₄ O	48.69 48.64	4.12 4.04	25.10 24.89	17.70 17.45	194–195	0.62	63 (A)
6	$C_{13}H_{10}Br_2N_4O$	38.96 39.23	$\frac{2.41}{2.53}$	40.25 40.15	$\frac{14.21}{14.07}$	178–180	0.69	58 (И)
7	C ₁₉ H ₁₅ BrN ₄ O	57.83 57.74	4.02 3.83	20.39 20.22	13.95 14.17	221–222*2	0.63	88 (A) 79 (Б)
8	C ₁₉ H ₁₅ BrN ₄ O	<u>55.78</u> 55.48	3.72 3.68	19.56 19.43	13.89 13.62	236–237	0.53	60 (A) 48 (B) 50 (B)
9	C ₂₀ H ₁₇ BrN ₄ O	58.81 58.69	4.33 4.19	19.72 19.52	13.79 13.69	207–208	0.66	42

^{*} Соединение 5 кристаллизовали из метанола, 6 – из пропанола-2, 7, 8 – из уксусной кислоты, 9 – из 2-метилпропанола-1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н записаны на приборе Bruker WH-90 (ТМС) в ДМСО-d₆. Масс-спектры получены на приборе Varian MAT 311A при стандартном режиме работы. Контроль за чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol в системе растворителй толуол—пропанол-2, 2:1. Колоночную хроматографию проводили на колонке (40×2.5 см), заполненной силикагелем марки L 100/160, элюент толуол—пропанол-2, 2:1. Результаты бромирования соединения 1 приведены в табл. 1, а характеристики соединений 5-9- в табл. 2.

Бромирование 5H-2-метил-7-фенилимидазо[1,2-*b***]-1,2,4-триазепин-4-она (1)**. А–Д. К раствору 0.48 г (2 ммоль) триазепина **1** в 10–15 мл органического растворителя

^{*2} Лит. Т. пл. 220–222 °C [1].

добавляют 2 или 4 ммоль БСИ и нагревают. После охлаждения осадок соединения 5 отфильтровывают, промывают эфиром и сушат. При проведении реакции по методам Б–Г выделенный осадок хроматографируют на колонке. Из первой бесцветной фракции с R_f 0.62 после упаривания растворителей и перекристаллизации из метанола получают бромимидазотриазепин 5. Из второй желтой фракции после отгонки растворителей, перекристаллизации и высушивания выделяют дибромид 6. При проведении синтеза по методу Д после охлаждения реакционной смеси осадок продукта 6 отфильтровывают, промывают эфиром и сушат.

Е–И. Смесь 1.2 г (5 ммоль) соединения **1** и 5, 10 или 15 ммоль брома нагревают в 10 мл органического растворителя или выдерживают в уксусной кислоте при комнатной температуре. Обрабатывают как описано в методе Д. В случае метода Е реакционную массу выливают в 50 мл воды, нейтрализуют ацетатом натрия, выделившийся осадок соединений **5**, **6** отфильтровывают, промывают водой, сушат и хроматографируют как описано в методах Б–Г. Масс-спектр соединения **5**, m/z ($I_{\text{отн}}$, %): M^+ –320(26), 318(27), Φ –279(16), 277(15); Φ –251(12), 249(12), 240(17), 239(14); Φ ₂ –238(4), 236(13), 196(11); 194(12); 182(10); 180(9); 161(20); 149(14); 144(10); 136(15); 129(30); 117(14); 104(50); 103(16); 102(12); 89(13); 88(99); 87(13); 77(27); 58(100).

5H-3-Бром-2-метил-7,8-дифенилимидазо[1,2-b]-1,2,4-триазепин-4-он (7). А. К раствору 0.64 г (2 ммоль) соединения **2** в 5 мл уксусной кислоты при 25 °C в три приема добавляют 0.48 г (3 ммоль) брома. Раствор перемешивают 1 ч при 40 °C, выливают в 100 мл воды, выделившийся желтый осадок отфильтровывают, промывают водой и сушат.

Б. Раствор 0.64 г (2 ммоль) соединения **2** и 0.36 г (2 ммоль) БСИ в 10 мл четырех-хлористого углерода кипятят 10 ч. После охлаждения осадок соединения **7** отфильтровывают, промывают эфиром и сушат.

5H-3-Бром-2-метил-7,8-дифенилимидазо[1,2-b]-1,2,4-триазепин-4-тион (8). А. К раствору 0.66 г (2 ммоль) тиона **3** [2] в 10 мл уксусной кислоты по каплям добавляют 0.4 г (2.5 ммоль) брома в 5 мл уксусной кислоты и перемешивают при 20–22 °C 1 ч. Образовавшийся в процессе реакции осадок отфильтровывают, промывают ацетоном и сушат.

Б. Смесь 0.33 г (1 ммоль) соединения 3, 0.36 г (2 ммоль) БСИ и 10 мл CCl_4 кипятят 4 ч. После охлаждения осадок отфильтровывают, промывают эфиром и сушат.

В. Смесь 0.4 г (1 ммоль) соединения **7**, 0.34 г (1.5 ммоль) P_2S_5 в 10 мл безводного пиридина кипятят 3 ч. Реакционную массу охлаждают, осадок отфильтровывают, промывают спиртом и сушат.

5H-2-Бромметил-3-метил-7,8-дифенилимидазо[1,2-*b***]-1,2,4-триазепин-4-он (9). К раствору 0.66 г (2 ммоль) имидазотриазепинона 4 в 15 мл ССІ₄ добавляют 0.36 г (2 ммоль) БСИ и кипятят 8 ч. Реакционную смесь охлаждают, выделившийся осадок отфильтровывают, промывают эфиром и сушат. Масс-спектр, m/z (I_{\rm отн}, %): M^+– 410(4), 408(13); 329(27); 289(25); 261(10); 260(12); 234(37); 219(7); 218(6); 193(53); 178(14); 136(48); 82(96); 81(34); 80(100); 79(36); 77(33).**

СПИСОК ЛИТЕРАТУРЫ

- 1. В. П. Кругленко, Н. С. Паталаха, П. Б. Курапов, Н. А. Клюев, В. А. Идзиковский, И. И. Грандберг, М. В. Повстяной, *ХГС*, 694 (1985).
- 2. В. П. Кругленко, В. А. Идзиковский, Н. А. Клюев, М. В. Повстяной, ХГС, 386 (1988).
- 3. В. П. Кругленко, В. А. Идзиковский, Н. Н. Кобец, М. В. Повстяной, *XГС*, 234 (1990).

Херсонский государственный технический университет, Херсон 325008, Украина e-mail: lvi@tic.kherson.ua Поступило в редакцию 18.03.99