ПИСЬМО В РЕДАКЦИЮ

СИНТЕЗ И АЦИЛИРОВАНИЕ 3-АРИЛ-5-(2-ФЕНИЛЭТИНИЛ)-4,5-ДИГИДРО-1*H*-ПИРАЗОЛОВ

Ключевые слова: винилацетиленовые кетоны, гидразингидрат, пиразолины, N-ацилирование, циклизация.

Полицентровый характер винилацетиленилкетонов существенным образом сказывается на протекании их реакций с гидразинами. Так, (E)-1,5-дифенил-пент-1-ен-4-ин-3-он (1) реагирует с ацетилгидразином по тройной связи, образуя 1-(5-гидрокси-5-стирил-3-фенил-4,5-дигидро-1H-пиразол-1-ил)этанон [1], а с фенилгидразином — по двойной с образованием 1,5-дифенил-3-фенил-этинил-4,5-дигидро-1H-пиразола [2]. Реакция с гидразингидратом проходит по обеим кратным связям кетона 1, что приводит к смеси 3-(1-гидразинил-2-фенилэтил)-5-фенил-1H-пиразола и 3-(2-гидразинил-2-фенилэтил)-5-фенил-1H-пиразола [3].

Для структурно изомерных винилацетиленилкетонам 1 арилацетиленильнильными 2 описаны реакции циклизации, приводящие к образованию дизамещённых фуранов [4–6] и ацетиленилазиридинов [7]. Согласно данным работы [8], такого типа кетоны представляют интерес и для синтеза потенциально биологически активных пиразолинов, хотя сведений об этой реакции в литературе не обнаружено.

Мы обнаружили, что кетоны **2a**—е реагируют с гидразингидратом в этаноле при комнатной температуре с образованием 3-арил-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразолов **3a**—е с выходами до 84%. Столь лёгкому протеканию этой реакции, по-видимому, способствует характерная ориентация енонового фрагмента кетонов **2a**—е [9]. Отметим, что продуктов присоединения гидразингидрата по тройной связи в реакционных смесях не обнаружено.

$$Ph$$
 $N_2H_4 \cdot H_2O$
 $\sim 20 \, ^{\circ}C, EtOH$
 $\sim H_2O$
 $\sim 20 \, ^{\circ}C, EtOH$
 $\sim H_2O$
 $\sim H_2O$

Структура соединений **3а**—е подтверждается наличием в их спектрах ЯМР 1 Н двух сигналов диастереотопных протонов 4-СН $_2$ и мультиплета протона 5-СН пиразольного цикла. В спектрах ЯМР 13 С наблюдаются сигналы атомов углерода пиразольного цикла, также проявляются сигналы атомов углерода тройной связи. В ИК спектрах присутствуют характеристические полосы тройной связи С \equiv С в области 2227–2218 см $^{-1}$.

5-Ацетиленилпиразолины **3а**—е быстро окисляются на воздухе, однако в эфире в присутствии пиридина они легко ацилируются хлорангидридами карбоновых кислот с образованием устойчивых ацилпроизводных **4а**—с, которые интересны как соединения с противомикобактериальной активностью [8].

ИК спектры зарегистрированы на приборе ФСМ-1201 в таблетках КВг. Спектры ЯМР ¹Н и ¹³С записаны на спектрометрах Bruker AM-300 (300 и 75 МГц соответственно, соединения **3a,c-e**) и Jeol ECX-400A (400 и 100 МГц соответственно, соединения **3b**, **4a-c**) в ДМСО-d₆ (соединения **3a-e**) и CDCl₃ (соединения **4a-c**), внутренний стандарт – ТМС. Масс-спектры высокого разрешения зарегистрированы на приборе QExactive, ионизация электрораспылением. Элементный анализ выполнен на стандартной аппаратуре по методике [10]. Температуры плавления определены в открытом капилляре. Использовался гидразингидрат производства фирмы Sigma Aldrich.

3-Арил-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразолы **3**а-е (общая методика). Раствор 12 ммоль кетона **2** [9] в 40 мл 95% EtOH нагревают до 60 °C, добавляют 1.82 г (36 ммоль) 100% $N_2H_4 \cdot H_2O$ и оставляют при комнатной температуре на 10 ч. Выпавший осадок отфильтровывают, промывают 3 мл 50% EtOH и сушат на воздухе.

3-Фенил-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразол (3а). Выход 84%. Бесцветные иглы. Т. пл. 98–100 °С (с разл.). ИК спектр, v, см⁻¹: 3347 (NH), 2218 (С \equiv С), 1589 (С \equiv N). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 3.11 (1H, д. д, 2J = 16.1, 3J = 8.1) и 3.35 (1H, д. д, 2J = 16.1, 3J = 10.6, 4-CH₂); 4.68–4.78 (1H, м, 5-CH); 7.28–7.68 (11H, м, H Ar, NH). Спектр ЯМР ¹³С, δ , м. д.: 39.3 (С-4); 50.2 (С-5); 82.5 (СНС \equiv С); 90.3 (С \equiv СС₆H₅); 122.8, 126.5, 129.1, 129.2, 129.7, 130.6, 131.9, 138.5 (С Ar); 149.4 (С-3). Найдено, m/z: 247.1238 [М+H]⁺. С₁₇H₁₅N₂. Вычислено, m/z: 247.1157.

3-(4-Метилфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразол (**3b**). Выход 81%. Бесцветные иглы. Т. пл. 106–107 °C (H_2O –ЕtOH). ИК спектр, v, см⁻¹: 3313 (NH), 2225 (С=С), 1589 (С=N). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 2.28 (3H, c, CH₃); 3.03 (1H, д. д, 2J = 16.0, 3J = 7.8) и 3.30 (1H, д. д, 2J = 16.0, 3J = 10.3, 4-CH₂); 4.62–4.69 (1H, м, 5-CH); 7.15–7.52 (10H, м, H Ar, NH). Спектр ЯМР ¹³С, δ , м. д.: 21.4 (CH₃); 40.7 (C-4); 50.6 (C-5); 83.0 (СНС=С); 91.0 (С=С₆H₄); 122.2, 125.2, 125.6, 128.4, 128.5, 128.6, 131.3, 132.7 (C Ar); 150.0 (С-3). Найдено, m/z: 261.1384 [М+H]⁺. $C_{18}H_{17}N_2$. Вычислено, m/z: 261.1392.

3-(4-Метоксифенил)-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразол (3c). Выход 46%. Бесцветные иглы. Т. пл. > 90 °C (с разл.). ИК спектр, v, см $^{-1}$: 3310 (NH), 2227 (С \equiv C), 1603 (С \equiv N). Спектр ЯМР 1 H, δ , м. д. (J, Γ п): 3.06 (1H, д. д, ^{2}J = 16.1, ^{3}J = 8.1) и 3.32 (1H, д. д, ^{2}J = 16.1, ^{3}J = 10.6, 4-CH₂); 3.78 (3H, c, CH₃); 4.63–4.72 (1H, м, 5-CH); 6.93–7.76 (10H, м, H Ar, NH). Спектр ЯМР 13 С, δ , м. д.: 39.5 (С-4); 50.0 (С-5); 55.1 (СH₃); 82.4 (СНС \equiv C); 90.5 (С \equiv C₆H₄); 122.2, 125.4, 126.6, 128.5, 128.6, 128.8, 131.2, 131.3 (C Ar); 149.4 (С-3). Найдено, m/z: 277.1334 [М+H] $^{+}$. С₁₈H₁₇N₂O. Вычислено, m/z: 277.1269.

3-(4-Хлорфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразол (3d). Выход 83%. Бесцветные иглы. Т. пл. 104–105 °C (с разл.). ИК спектр v, см $^{-1}$: 3312 (NH), 2226 (С \equiv С), 1587 (С \equiv N). Спектр ЯМР 1 H, δ , м. д. (J, Γ п): 3.10 (1H, д. д, ^{2}J = 16.1, ^{3}J = 8.1) и 3.34 (1H, д. д, ^{2}J = 16.1, ^{3}J = 10.6, 4-CH₂); 4.70–4.81 (1H, м, 5-CH); 7.30–7.77 (10H, м, H Ar, NH). Спектр ЯМР 13 С, δ , м. д.: 39.0 (С-4); 50.3 (С-5); 82.6 (СНС \equiv С); 90.1 (С \equiv СС $_{6}$ H₄); 122.1, 126.7, 127.2, 128.5, 128.6, 131.3, 131.6, 132.8 (C Ar); 148.3 (С-3). Найдено, m/z: 281.0835 [М+H] $^{+}$. С $_{17}$ H₁₄ClN₂. Вычислено, m/z: 281.0840.

3-(4-Бромфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*H*-пиразол (3e). Выход 80%. Бесцветные иглы. Т. пл. 100–101 °C (с разл.) (H_2O –EtOH). ИК спектр, v, см⁻¹: 3314 (NH), 2225 (С \equiv C), 1586 (С \equiv N). Спектр ЯМР 1 H, δ , м. д. (J, Γ II): 3.13 (1H, д. д, 2J = 16.2, 3J = 8.1) и 3.34 (1H, д. д, 2J = 16.1, 3J = 10.6, 4-CH₂); 4.68–4.80 (1H, м, 5-CH); 7.30–7.77 (10H, м, H Ar, NH). Спектр ЯМР 13 C, δ , м. д.: 39.0 (C-4); 50.3 (C-5); 82.6 (CH- $\underline{C}\equiv$ C); 90.1 (С \equiv C₆H₄); 121.4, 122.1, 127.5, 128.5, 128.6, 131.3, 131.4, 131.9 (C Ar); 148.3 (C-3). Найдено, m/z: 325.0342 [M+H] $^+$. С $_{17}$ H₁₄BrN₂. Вычислено, m/z: 325.0335.

1-Ацил-3-(4-метилфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*H***-пиразолы 4а**—**с** (общая методика). К раствору 0.107 г (0.41 ммоль) пиразолина **3b** и 0.360 г (0.46 ммоль) пиридина в 40 мл Et_2O при перемешивании добавляют раствор 0.41 ммоль сответствующего хлорангидрида в 15 мл Et_2O , перемешивают при комнатной температуре

в течение 1 ч, промывают водой (3×30 мл) и сушат над MgSO₄. Осушитель фильтруют, фильтрат упаривают в вакууме на 3/4 объёма, выпавшие кристаллы отфильтровывают и сушат на воздухе.

1-Ацетил-3-(4-метилфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*Н*-пиразол (4а). Выход 80%. Бесцветные иглы. Т. пл. 123–124 °C (H₂O–EtOH). ИК спектр, v, см⁻¹: 2238 (С \equiv C), 1658 (С=O), 1601 (С=N). Спектр ЯМР ¹H, δ , м. д. (J, Γ Ц): 2.39 (3H, c, CH₃C₆H₄); 2.43 (3H, c, CH₃CO); 3.42 (1H, д. д, $^2J = 17.2$, $^3J = 4.8$) и 3.59 (1H, д. д, $^2J = 17.2$, $^3J = 11.6$, 4-CH₂); 5.40 (1H, д. д, $^2J = 11.6$, $^3J = 4.8$, 5-CH); 7.21–7.65 (9H, м, H Ar). Спектр ЯМР ¹³C, δ , м. д.: 21.6 (\underline{C} H₃C₆H₄); 22.1 (\underline{C} H₃CO); 41.0 (C-4); 47.5 (C-5); 83.6 (CH \underline{C} \equiv C); 87.1 (C $\underline{=}$ CC₆H₄); 122.5, 126.6, 128.2, 128.5, 129.6, 132.0, 140.9 (C Ar); 154.0 (C-3); 168.8 (C $\underline{=}$ O). Найдено, m/z: 303.1486 [М+H]⁺. C₂₀H₁₉N₂O. Вычислено, m/z: 303.1498. Найдено, %: C 79.57; H 6.26. C₂₀H₁₈N₂O. Вычислено, %: C 79.44; H 6.00.

1-Бензоил-3-(4-метилфенил)-5-(2-фенилэтинил)-4,5-дигидро-1*Н*-пиразол (4b). Выход 79%. Бесцветные иглы. Т. пл. 144–145 °C (H₂O–EtOH). ИК спектр, v, см⁻¹: 2234 (С \equiv C), 1627 (С \equiv O), 1599 (С \equiv N). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 2.38 (3H, с, С \equiv H₃C₆H₄); 3.46 (1H, д. д, ²J = 17.4, ³J = 5.4) и 3.63 (1H, д. д, ²J = 17.4, ³J = 11.6, 4-CH₂); 5.63 (1H, д. д, ³J = 11.6, ³J = 5.4, 5-CH); 7.17–7.30 (5H, м, H Ar); 7.43–7.53 (5H, м, H Ar); 7.58–7.63 (2H, м, H Ar); 8.05–8.12 (2H, м, H Ar). Спектр ЯМР ¹³C, δ , м. д.: 21.7 (С \equiv H₃C₆H₄); 40.2 (C-4); 49.1 (C-5); 83.8 (СН \equiv C); 87.2 (С \equiv СС₆H₄); 122.5, 126.8, 127.8, 128.3, 128.5, 128.6, 129.6, 130.3, 131.2, 132.0, 134.2, 141.0 (C Ar); 154.8 (C-3); 166.4 (C=O). Найдено, m/z: 365.1640 [М+H]⁺. C₂₅H₂₁N₂O. Вычислено, %: 365.1655. Найдено, %: C 82.38; H 5.55. C₂₅H₂₀N₂O. Вычислено, %: C 82.39; H 5.53.

3-(4-Метилфенил)-5-(2-фенилэтинил)-1-(2-фуроил)-4,5-дигидро-1*H*-пиразол (4с). Выход 57%. Бесцветные иглы. Т. пл. 162–163 °C ($\rm H_2O-EtOH$). ИК спектр, v, см $^{-1}$: 2231 ($\rm C\equiv C$), 1637 ($\rm C=O$), 1596 ($\rm C=N$). Спектр ЯМР 1 Н, δ , м. д. ($\it J$, $\rm \Gamma u$): 2.40 (3H, с, $\rm C\underline{H}_3C_6H_4$); 3.43 (1H, д. д, $^{2}\it J=17.3$, $^{3}\it J=4.8$) и 3.60 (1H, д. д, $^{2}\it J=17.3$, $^{3}\it J=11.5$, 4-CH₂); 5.59 (1H, д. д, $^{3}\it J=11.5$, $^{3}\it J=4.8$, 5-CH); 6.54–6.57 (1H, м, H фурил); 7.21–7.28 (5H, м, H Ar); 7.38–7.42 (2H, м, H фурил); 7.61–7.66 (4H, м, H Ar). Спектр ЯМР $^{13}\it C$, δ , м. д.: 21.7 ($\it C\underline{H}_3C_6H_4$); 40.0 (C-4); 48.4 (C-5); 84.0 (CH $\it C\underline{E}\equiv C$); 86.8 (C $\it E\underline{C}C_6H_4$); 111.7, 119.3, 122.4, 126.8, 127.8, 128.2, 128.4, 129.7, 141.2, 145.6, 146.3 (C Ar); 155.5 (C-3); 155.7 (C=O). Найдено, $\it m/z$: 355.1433 [M+H] $^+$. C₂₃H₁₉N₂O₂. Вычислено, %: C 77.72; H 5.40. C₂₃H₁₈N₂O₂. Вычислено, %: C 77.95; H 5.12.

СПИСОК ЛИТЕРАТУРЫ

- 1. J. P. Waldo, S. Mehta, R. C. Larock, J. Org. Chem., 73, 6666 (2008).
- 2. Е. В. Ботвинник, А. Н. Баландов, М. А. Кузнецов, *Журн. орган. химии*, **37**, 446 (2001). [Russ. J. Org. Chem., **37**, 421 (2001).]
- 3. H. Reimlinger, J. J. M. Vandewalle, Justus Liebigs Ann. Chem., 720, 117 (1968).
- 4. H. Kuroda, E. Hanaki, H. Izawa, M. Kano, H. Itahashi, Tetrahedron, 60, 1913 (2004).
- 5. X. Du, H. Chen, Y. Chen, J. Chen, Y. Liu, Synlett, 1010 (2011).
- 6. X. Du, H. Chen, Y. Liu, Chem.-Eur. J., 14, 9495 (2008).
- 7. X. Du, X. Xie, Y. Liu, J. Org. Chem., 75, 510 (2010).
- 8. Md. A. Rahman, A. A. Siddiqui, Int. J. Pharm. Sci. Drug Res., 2, 165 (2010).
- А. А. Голованов, Д. Р. Латыпова, В. В. Бекин, В. С. Писарева, А. В. Вологжанина, В. А. Докичев, Журн. орган. химии, 49, 1282 (2013). [Russ. J. Org. Chem., 49, 1264 (2013).]
- В. А. Климова, Основные микрометоды анализа органических соединений, Химия, Москва, 1975, с. 39.

И. С. Один¹, А. А. Голованов^{1*}, В. В. Бекин¹, В. С. Писарева¹

¹ Тольяттинский государственный университет, ул. Белорусская, 14, Тольятти 445667, Россия e-mail: aleksandgolovanov@yandex.ru Поступило 24.09.2013 После доработки 16.10.2013