Т. В. Рыбалова, В. Ф. Седова, И. Ю. Багрянская, Ю. В. Гатилов, О. П. Шкурко

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 4-НИТРО-2-ФЕНИЛ-6-ХЛОРПИРИМИДИНА

Методом РСА определены кристаллические структуры 4-нитро-2-фенил-6-хлорпиримидина и 2-фенил-6-хлорпиримидина. Сопоставлено влияние нитрогруппы и эндоциклических атомов азота на геометрические параметры молекул 2- и 4-нитропиримидинов, а также родственных α-нитроазинов.

Ключевые слова: нитропиримидин, хлорпиримидин, кристаллическая структура.

Ранее нами были опубликованы данные о кристаллической структуре 2-нитропиридина (1) [1], 4,6-диметил-2-нитропиримидина (2) и 2-нитро-5фенилпиримидина (3) [2]. В продолжение изучения геометрии α-нитроазинов мы обратились к замещенным 4-нитропиримидинам. По данным Кембриджского банка структурных данных (КБСД) [3], геометрия этой группы соединений не изучалась.

В настоящей работе методом РСА определена кристаллическая структура 4-нитро-2-фенил-6-хлорпиримидина (4) (табл. 1, 2). Для более корректного выявления влияния нитрогруппы на геометрические параметры пиримидинового кольца была определена кристаллическая структура 2-фенил-6-хлорпиримидина (5) (табл. 1, 3). Геометрические характеристики указанных соединений (длины связей и валентные углы) приведены в табл. 4, 5.

В соединении **4** (рис. 1) поворот нитрогруппы относительно плоскости пиримидинового кольца составляет 14.2(1)°, а между плоскостями гетероцикла и фенильного кольца имеется небольшой двугранный угол 6.9(1)°. Подобный угол в соединении **5** (рис. 2) равен 1.9(1)°. Для замещенных 2-фенилпиримидинов аналогичная величина значительно меньше, чем для замещенных 5-фенилпиримидинов [2, 4].

Сравнение длин связей в соединениях **4** и **5** (см. табл. 4) показывает, что при введении группы NO₂ в положение 4 пиримидинового кольца эндоциклическая связь N₍₃₎–C₍₄₎ сокращается на 0.023(6) Å и практически не изменяются другие связи, в том числе эндоциклическая связь C₍₄₎–C₍₅₎. Связь C₍₆₎–Cl сокращается на 0.012(6) Å.

Изменение эндоциклических связей у *unco*-атома углерода, связанного с нитрогруппой, в соединении **4** аналогично изменениям, которые наблюдались ранее для других α-нитроазинов. Так, по сравнению со среднестатистическими величинами (табл. 6) эндоциклическая связь C–N у *unco*-атома углерода укорачивается для 2-нитропиридинов, 2-нитро-

-		_
Показатели	4	5
Брутто-формула	$C_{10}H_6ClN_3O_2$	C ₁₀ H ₇ ClN ₂
Молекулярный вес	235.63	190.63
Тип ячейки	Моноклинная	Триклинная
Пространственная группа	$P2_{1}/c$	<i>P</i> -1
Параметры ячейки, (Å)	a = 6.3434(9)	a = 6.179(2)
	<i>b</i> = 11.120(2)	<i>b</i> = 7.531(2)
	c = 14.770(2)	c = 10.102(2)
		$\alpha \Box = 91.07(2)$
	β=95.45(1)°	$\beta \Box = 101.58(2)$
		γ □= 98.64(2)
Объем ячейки (Å ³)	1037.1(3)	451.4(2)
Ζ	4	2
Размеры кристалла (мм ³)	$1.15\times0.20\times0.15$	$1.00\times0.40\times0.15$
Метод сканирования	20/0	20/0
Область θ (°)	4–70	4–70
Количество отражений	2314	1939
Независимых	1969	1710
Учет поглощения	По огранке	По огранке
Трансмиссия	0.663-0.309	0.625-0.192
<i>R</i> -факторы		
$R_1 (I > 2\sigma)$	0.0512	0.0429
wR_2 (BCe I)	0.1618	0.1313
S	1.081	1.047
Экстинкция	0.004(1)	0.050(6)

Кристаллографические данные соединений 4 и 5

и 4-нитропиримидинов на 0.029, 0.021 и 0.026 Å соответственно; эндоциклическая связь С-С сокращается в меньшей степени – на 0.011 (2-нитропиридины) и 0.019 Å (4-нитропиримидин).

Для α -нитроазинов характерно заметное удлинение экзоциклической связи С–N (связи С–NO₂) на 0.029 (2-нитропиридины), 0.034 (2-нитропиримидины) и 0.040 А (4-нитропиримидин). Изменения длин эндоциклических связей С–С у *ипсо*-атома углерода в β -нитроазинах по сравнению со среднестатистическими величинами практически отсутствуют: они составляют 0.005 и 0.006 Å для замещенных 3(5)-нитропиридинов и 5-нитропиримидинов соответственно. Экзоциклическая связь С–NO₂ сокращается на 0.020 Å для 3(5)-нитропиридинов и не изменяется для 5-нитропиримидинов (табл. 6).

RHF/6-31G* расчеты для соединений **4** и **5** (табл. 4, 5) находятся в соответствии с экспериментальными данными и также указывают на укорочение при введении нитрогруппы эндоциклических связей $C_{(4)}$ – $N_{(3)}$ и $C_{(4)}$ – $C_{(5)}$ у *ипсо*-атома углерода на 0.020 и 0.008 Å соответственно (табл. 4).

230

Рис. 1. Строение молекулы 4-нитро-2-фенил-6-хлорпиримидина **4** по данным РСА (показаны 25 % тепловые эллипсоиды)

Рис. 2. Строение молекулы 2-фенил-6-хлорпиримидина **5** по данным РСА (показаны 25% тепловые эллипсоиды)

Атом	x/a	y/b	z/c	$U_{ m _{3KB}}$
N ₍₁₎	7675(3)	-99(2)	8179(1)	58(1)
C(2)	9596(4)	45(2)	8629(2)	52(1)
N(3)	10604(3)	1107(2)	8749(1)	54(1)
C ₍₄₎	9545(4)	2033(2)	8389(2)	55(1)
C ₍₅₎	7592(4)	2020(2)	7913(2)	61(1)
C ₍₆₎	6748(4)	872(2)	7827(2)	59(1)
C ₍₇₎	10705(4)	-1037(2)	9007(2)	54(1)
C ₍₈₎	12787(5)	-965(3)	9390(2)	66(1)
C ₍₉₎	13821(6)	-1977(3)	9739(2)	77(1)
C(10)	12788(6)	-3073(3)	9708(2)	80(1)
C ₍₁₁₎	10740(7)	-3148(3)	9328(2)	79(1)
C(12)	9671(5)	-2142(2)	8979(2)	67(1)
N(13)	10673(4)	3220(2)	8532(2)	66(1)
O ₍₁₄₎	12505(4)	3212(2)	8788(2)	103(1)
O(15)	9604(4)	4110(2)	8370(2)	85(1)
Cl	4312(1)	662(1)	7215(1)	83(1)

Координаты атомов (×10⁴) и эквивалентные изотропные тепловые факторы (Å²×10³) неводородных атомов 4-нитро-2-фенил-6-хлорпиримидина 4

Таблица З

Координаты атомов (×10⁴) и эквивалентные изотропные тепловые факторы (Å²×10³) неводородных атомов 2-фенил-6-хлорпиримидина 5

Атом	x/a	y/b	z/c	$U_{ m _{3KB}}$
N ₍₁₎	1512(2)	2233(2)	1562(2)	59(1)
C ₍₂₎	-229(3)	2175(2)	485(2)	53(1)
N(3)	-2391(2)	1577(2)	480(2)	67(1)
C ₍₄₎	-2778(3)	1030(3)	1667(2)	74(1)
C(5)	-1121(4)	1048(3)	2831(2)	71(1)
C ₍₆₎	1022(3)	1672(3)	2693(2)	63(1)
C ₍₇₎	244(3)	2823(2)	-811(2)	53(1)
C ₍₈₎	-1480(3)	2782(3)	-1969(2)	70(1)
C ₍₉₎	-1035(4)	3408(3)	-3173(2)	84(1)
C(10)	1128(4)	4082(3)	-3228(2)	77(1)
C ₍₁₁₎	2858(4)	4123(3)	-2096(2)	75(1)
C ₍₁₂₎	2427(3)	3487(3)	-888(2)	66(1)
Cl	3288(1)	1726(1)	4097(1)	99(1)

Сравнение геометрических параметров соединений **4** и **5** по данным PCA показывает, что введение группы NO₂ приводит к увеличению внутрициклического валентного угла у *ипсо*-атома $C_{(4)}$ на 3.5° и уменьшению углов у вицинальных атомов на 1.2° у N₍₃₎ и на 2.3° у $C_{(5)}$.

Длины связей	4-Нитро-2-фенил-6-хлор- пиримидин 4		2-Фенил-6-хлор- пиримидин 5		
	ab initio	PCA	ab initio	PCA	
N ₍₁₎ -C ₍₂₎	1.331	1.341(3)	1.330	1.336(2)	
C(2)-N(3)	1.323	1.347(3)	1.322	1.343(2)	
N(3)-C(4)	1.299	1.313(3)	1.319	1.336(3)	
C(4)-C(5)	1.371	1.365(4)	1.379	1.367(3)	
C(5)-C(6)	1.390	1.385(3)	1.383	1.376(3)	
C ₍₆₎ -N ₍₁₎	1.300	1.314(3)	1.301	1.310(2)	
C ₍₄₎ -N ₍₁₃₎	1.482	1.508(3)	-	-	
N(13)-O(14)	1.182	1.187(3)	-	-	
N(13)-O(15)	1.195	1.210(3)	-	-	
C ₍₂₎ –C ₍₇₎	1.480	1.476(3)	1.485	1.482(2)	
$C_{(7)} - C_{(8)}$	1.393	1.388(4)	1.392	1.384(2)	
C ₍₈₎ –C ₍₉₎	1.383	1.378(4)	1.384	1.383(3)	
C ₍₉₎ –C ₍₁₀₎	1.386	1.382(4)	1.386	1.371(3)	
C(10)-C(11)	1.386	1.368(5)	1.386	1.369(3)	
C(11)-C(12)	1.383	1.382(4)	1.384	1.386(3)	
C ₍₁₂₎ -C ₍₇₎	1.392	1.391(3)	1.392	1.387(2)	
C ₍₆₎ –Cl	1.727	1.730(3)	1.735	1.742(2)	

Длины связей (Å) в молекулах соединений 4 и 5

Остальные углы в молекуле не изменяются. Это согласуется с нашими наблюдениями относительно того, что введение нитрогруппы в α -положение к атому азота азинового кольца приводит к увеличению внутрициклического валентного угла у *ипсо*-атома углерода на ~3° [2]. По данным расчетов, увеличение угла $N_{(3)}$ - $C_{(4)}$ - $C_{(5)}$ при введении группы NO_2 в соединение **5** составляет 2.4° (табл. 5).

В отличие от ранее изученных α -нитроазинов **1–3** в 4-нитропиримидине **4**, по данным PCA, наблюдается асимметрия нитрогруппы: одна связь N–O длиннее другой на 0.023 Å (табл. 4). Расчетные данные для соединения **4** (табл. 4) также свидетельствуют о различии длин связей N–O на 0.013 Å. Асимметрия нитрогруппы в α -нитроазинах была предсказана расчетами на уровне 3-21G* для незамещенных 4-нитропиримидина и 2-нитропиридина **1** [7]. Однако экспериментально (PCA) показано, что в кристаллической фазе у 2-нитропиридина эти связи практически одинаковы – их разность всего 0.004 Å [1].

Отметим слегка сокращенный межмолекулярный контакт Cl...O 3.080(2) Å в кристалле соединения 4 по сравнению с суммой ван-дерваальсовых радиусов 3.13 Å [8].

Полученные в работе данные подтверждают предположения о едином характере влияния нитрогруппы в молекулах замещенных α -азинов на перераспределение *s*- и *p*-электронов в образовании эндо- и экзоциклических связей C–N.

Угол	4-Нитро-2-фенил-6	5-хлор-пиримидин 4	2-Фенил-6-хлор-пиримидин 5		
	ab initio	РСА	ab initio	PCA	
$N_{(1)} - C_{(2)} - N_{(3)}$	123.5	124.6(2)	124.4	125.2(2)	
$C_{(2)}$ -N $_{(3)}$ -C $_{(4)}$	116.8	114.6(2)	117.3	115.8(2)	
$N_{(3)} - C_{(4)} - C_{(5)}$	125.5	127.2(2)	123.1	123.7(2)	
$C_{(4)} - C_{(5)} - C_{(6)}$	112.6	112.4(2)	114.4	114.7(2)	
$C_{(5)} - C_{(6)} - N_{(1)}$	123.7	124.5(2)	123.6	124.7(2)	
$C_{(6)} - N_{(1)} - C_{(2)}$	117.8	116.7(2)	117.3	116.0(2)	
N ₍₃₎ -C ₍₄₎ -N ₍₁₃₎	115.9	114.3(2)	_	-	
C(5)-C(4)-N(13)	118.6	118.5(2)	_	_	
C ₍₄₎ -N ₍₁₃₎ -O ₍₁₄₎	117.9	118.4(2)	_	_	
C ₍₄₎ -N ₍₁₃₎ -O ₍₁₅₎	115.9	116.0(2)	_	_	
O ₍₁₄₎ -N ₍₁₃₎ -O ₍₁₅₎	126.2	125.6(2)	_	_	
$N_{(1)}-C_{(2)}-C_{(7)}$	118.2	117.9(2)	117.4	117.8(1)	
N(3)-C(2)-C(7)	118.2	117.5(2)	118.2	117.0(2)	
$C_{(2)} - C_{(7)} - C_{(8)}$	120.1	120.5(2)	120.2	120.8(2)	
$C_{(2)}-C_{(7)}-C_{(12)}$	120.4	120.1(2)	120.5	120.7(2)	
$C_{(8)}-C_{(7)}-C_{(12)}$	119.6	119.4(2)	119.3	118.5(2)	
$C_{(7)} - C_{(8)} - C_{(9)}$	120.1	120.4(3)	120.3	120.7(2)	
$C_{(8)}-C_{(9)}-C_{(10)}$	120.1	120.0(3)	120.1	120.1(2)	
$C_{(9)} - C_{(10)} - C_{(11)}$	120.1	119.7(3)	119.9	120.1(2)	
$C_{(10)}-C_{(11)}-C_{(12)}$	120.1	121.1(3)	120.1	120.1(2)	
$C_{(11)} - C_{(12)} - C_{(7)}$	120.1	119.4(3)	120.3	120.5(2)	
N(1)-C(6)-Cl	117.3	116.1(2)	117.0	116.2(1)	
C(5)-C(6)-Cl	119.0	119.4(2)	119.4	119.1(2)	

Валентные углы (град.) в молекулах 4 и 5

Таблица б

Усредненные длины связей С—С и С—N (Å) у ипсо-атома углерода замещенных нитропиридинов и нитропиримидинов

Связь Связь ческие значения [5]	α-Нитроазины			β-Нитроазины		
	статисти- ческие значения [5]	2-нитро- пиридины [2]	2-нитропи- римидины [2]	4-нитро- пирими- дин 4	3-нитро- пири- дины*	2-R-5- нитро- пирими- дины [6]* ²
N-C-N _{Pym}	1.333(13)	-	1.312(2)	-	-	-
N-C _{Pym}	1.339(15)	-	-	1.313(3)		-
N–C _{Py}	1.337(12)	1.308(6)	-	-		-
C-C _{Ar}	1.384(13)	1.373(16)	_	1.365(4)	1.381(6)	1.378(11)
C _{Ar} -NO ₂	1.468(14)	1.497(6)	1.502(4)	1.508(3)	1.448(12)	1.468(1)

По 9 структурам замещенных 3-нитропиридинов, взятых из КБСД [3] с σ_f= 1, без заместителей в *орто*-положениях к нитрогруппе.
 *² Без заместителей в положениях 4, 6.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения 4 и 5 синтезированы по известным методикам [9] и [10]. Кристаллы для РСА получены перекристаллизацией образцов из этанола; Т. пл. 100–101 °С для соединения 4, 72–73 °С – для соединения 5.

Рентгеноструктурный эксперимент проведен на дифрактометре Syntex P2₁, CuK_{α}-излучение, с графитовым монохроматором. Кристаллографические параметры кристаллов приведены в табл. 1. Расшифровка структур проведена прямым методом по программе SHELXS-86, уточнение – полноматричным методом наименьших квадратов по программе SHELXL-93 в анизотропном приближении по всем F^2 . Координаты атомов водорода уточнялись изотропно и взяты из разностного синтеза. Координаты неводородных атомов приведены в табл. 2, 3.

RHF/6-31 G* расчеты проводили по программе GAMESS [11].

Авторы благодарны Российскому фонду фундаментальных исследований за финансовую поддержку (грант 96-15-97562) и помощь в оплате лицензии на пользование Кембриджским банком структурных данных (проект 96-07-89187).

СПИСОК ЛИТЕРАТУРЫ

- 1. Т. В. Рыбалова, В. Ф. Седова, Ю. В. Гатилов, О. П. Шкурко, *ХГС*, 1367 (1998).
- 2. Т. В. Рыбалова, В. Ф. Седова, Ю. В. Гатилов, О. П. Шкурко, ХГС, 348 (1999).
- 3. F. N. Allen, O. Kennard, Chemical Design Automation News, 8, 31 (1993).
- 4. R. P. Hernandez, J. D. Rodriquez, M. I. G. Trimino, Acta Crystallogr. Ser. C, 51, 1392 (1995).
- 5. F. H. Allen, O. Kennard, D. J. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc. Perkin Trans. 2, No. 12, S1 (1987).
- 6. W. A. W. Stolle, A. E. Frissen, A. T. M. Marcelis, H. C. van der Plas, J. Org. Chem. 56, 2411 (1991).
- 7. J. S. Murray, J. M. Seminario, P. Politzer, J. Mol. Structure, 187, 95 (1989).
- 8. Н. С. Зефиров, П. М. Зоркий, *Журн. структур. химии*, **17**, 994 (1976).
- 9. О. В. Ягодина, В. Ф. Седова, В. П. Мамаев, *XГС*, 1088 (1989).
- 10. H.C. van der Plas, B. Haase, B. Zuurdeeg, M. C. Vollering, *Rec. Trav. Chim.*, **85**, 1101 (1966).
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.*, 14, 1347 (1993).

Новосибирский институт органической химии СО РАН, Новосибирск 630090, Россия e-mail: gatilov@nioch.nsc.ru Поступило в редакцию 22.04.99